Skip to main content
Log in

The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The potential for introgression of Prunus davidiana, a wild species related to peach, was evaluated with respect to problems of non-Mendelian segregation or suppressed recombination which often hamper breeding processes based on interspecific crosses. Three connected (F1, F2 and BC2) populations, derived from a cross between P. davidiana clone P1908 and the peach cultivar Summergrand were used. The intraspecific map of P. davidiana already established using the F1 progeny was complemented, and two interspecific maps, for the F2 and BC2 progenies, were built with a set of markers selected from the Prunus reference map. With the molecular data collected for the F2 map construction, regions with distorted marker segregation were detected on the genome; one third of all loci deviated significantly from the expected Mendelian ratios. However, some of these distorted segregations were probably not due to the interspecific cross. On linkage group 6, a skewed area under gametic selection was most likely influenced by the self-incompatibility gene of P. davidiana. Using anchor loci, a good colinearity between the three maps built and the Prunus reference map was demonstrated. Comparative mapping also revealed that homologous recombination occurred normally between P. davidiana and the Prunus persica genome. This confirmed the closeness of the two species. Higher recombination rates were generally observed between P. davidiana and P. persica than between Prunus amygdalus and P. persica. The consequences for plant breeding strategy are discussed. The three maps of the F1, F2 and BC2 progenies provide useful tools for QTL detection and marker-assisted selection, as well as for assessing the efficiency of the peach breeding scheme applied to introgress P. davidiana genes into peach cultivated varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Allard RW (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278

    Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Ascasibar J, Dirlewanger E, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Jezzoni AF, Arús P (2002) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet (in press)

  • Arús P, Messeguer R, Viruel M, Tobutt K, Dirlewanger E, Santi F, Quarta R, Ritter E (1994) The European Prunus mapping project. Euphytica 77:97–100

    Google Scholar 

  • Ballester J, Boškovic R, Batlle I, Arús P, Vargas F, de Vicente MC (1998) Location of the self-incompatibility gene on the almond linkage map. Plant Breed 117:69–72

    Google Scholar 

  • Beavis WD, Grant D (1991) A linkage map based on information from four F2 populations of maize (Zea mays L.). Theor Appl Genet 82:636–644

    CAS  Google Scholar 

  • Byrne DH (2002) Peach breeding trends: a world wide perspective. Acta Hort 592:49–59

    Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrigton SE, Second G, McCough SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on interspecific backcross populations. Genetics 138:1251–1274

    CAS  PubMed  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L.) Batsch] × Prunus davidiana hybrids. Theor Appl Genet 93:909–919

    CAS  Google Scholar 

  • Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002) Isolation and characterisation of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in peach fruit acidity. Physiol Plant (in press)

    Google Scholar 

  • Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716

    CAS  PubMed  Google Scholar 

  • Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91:262–269

    CAS  Google Scholar 

  • Fulton TM, Nelson JC, Tanksley SD (1997) Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902

    CAS  Google Scholar 

  • Gradziel TM (2002) Almond species as sources of new germplasm for peach improvment. Acta Hort 592:81–88

    Google Scholar 

  • Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  Google Scholar 

  • Grasselly C (1974) Etude des possibilités de production d'hybrides F1 intra- et inter-spécifiques chez le sous-genre amygdalus I. Ann Amélior Plant 24:307–315

    Google Scholar 

  • Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagarha M (1996) Detection of segregation distortions in an indica–japonica rice cross using a high-resolution molecular map. Theor Appl Genet 92:145–150

    Article  CAS  Google Scholar 

  • Hedrick UP (1917) The peaches and nectarines of New York. Agriculture Experiment Station Bulletin 1916, part 1 and 2. Geneva, New York

  • Hesse CO (1975) Advances in fruit breeding Peaches. Purdue University Press, West Lafayette, Indiana, pp 325–326

  • Jauregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between 'Garfi' almond and 'Nemared' peach. Theor Appl Genet 102:1169–1176

    Article  CAS  Google Scholar 

  • Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691

    Article  Google Scholar 

  • Jeuken M, van Wijk R, Peleman J, Lindhout P (2001) An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa × L. saligna F2 populations. Theor Appl Genet 103:638–647

    CAS  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a satured linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1037–1041

    Article  Google Scholar 

  • Kaga A, Ishii T, Tsukimoto K, Tokoro E, Kamijima O (2000) Comparative molecular mapping in Ceratotropis species using an interspecific cross between azuki bean (Vigna angularis) and rice bean (V. umbellata). Theor Appl Genet 100:207–213

    CAS  Google Scholar 

  • Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676

    CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MapMaker: an interactive computer package for constructing primary genetics maps of experimental and natural populations. Genetics 116:174–181

    Google Scholar 

  • Lashermes P, Couturon E, Moreau N, Paillard M, Louarn J (1996) Inheritance and genetic mapping of self-incompatibility in Coffea canephora. Theor Appl Genet 93:458–462

    CAS  Google Scholar 

  • Lefebvre V, Palloix A, Caranta C, Pochard E (1995) Construction of an intraspecific integrated linkage map of pepper using molecular markers and haploid progenies. Genome 38:112–121

    CAS  Google Scholar 

  • Lorieux M, Perrier X, Goffinet B, Lanaud C, Gonzales de Leon D (1995) Maximum-likelihood models for mapping genetic markers showing segregation distorsion.2. F2 populations. Theor Appl Genet 90:81–89

    Google Scholar 

  • Lorieux M, Ndjiondjop MN, Ghesquiere A (2000) A first interspecific Oryza sativa × Oryza glaberrina microsatellite-based genetic linkage map. Theor Appl Genet 100:593–601

    CAS  Google Scholar 

  • Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199–207

    CAS  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Reer JM (2001) MapManager QTX, cross-platform software for genetic mapping. Mammal Genome 12:930–932

    Article  CAS  Google Scholar 

  • Martinez-Gomez P, Arulsekar S, Potter D, Gradziel TM (2002) Relationships among peach cultivars and related Prunus species as detected by simple sequence repeat (SSR) markers. Acta Hort (in press)

  • Massonié G, Monet R, Bastard Y, Grasselly C (1982) Résistance au puceron vert du pêcher, Myzus persicae Sulzer (Homoptera aphididae) chez Prunus persica (L.) Batsch et d'autres espèces de Prunus. Agronomie 2:63–70

    Google Scholar 

  • Meader EM, Blake MA (1938) Some plants characteristics of the progeny of Prunus persica and Prunus kansuensis crosses. Proc Am Soc Hort Sci 36:287–291

    Google Scholar 

  • Meader EM, Blake MA (1939) Some plants characteristics of the second generation progeny of Prunus persica and Prunus kansuensis. Proc Am Soc Hort Sci 37:223–231

    Google Scholar 

  • Miller P (1768) The gardeners dictionary, 8th edn. London

  • Pascal T, Kervella J, Pfeiffer F, Sauge MH, Esmanjaud D (1998) Evaluation of the interspecific progeny Prunus persica cv Summergrand × Prunus davidiana for disease resistance and some agronomic features. Acta Hort 465:185–191

    Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and envrironments. Genetics 127:181–197

    CAS  PubMed  Google Scholar 

  • Rehder A (1949) Bibliography of cultivated trees and schrubs. The Arnold Arboretum of Harward University Jamaica Plain, Massachussetts, USA

  • Rick CM (1969) Controlled introgression of chromosomes of Solanum pennelli into Lycopersicon esculentum: segregation and recombinations. Genetics 62:753–768

    Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624

    Article  Google Scholar 

  • Sauge MH, Kervella J, Pascal T (1998) Settling behaviour and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus. Entomol Exp et Appl 89:233–242

    Google Scholar 

  • Sauge MH, Pascal T, Lacroze JP, Pfeiffer F, Kervella J (2001) Mapping of a genetic factor of partial resistance to Myzus persicae in the wild peach Prunus davidiana, that impedes phloem sap ingestion by the aphid. Aphids in a new Millenium, 6th Int Symposium on Aphids, Rennes 3–7 September 2001

  • Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvment. J Am Soc Hort Sci 110:547–552

    Google Scholar 

  • Smykov VK, Ovcharenko GV, Perfilyeva ZN, Shoferistov EP (1982) Estimation of the peach hybrid resources by its mildew resistance against the infection background. Byull Gos Nikitsh Bot Sada 88:74–80

    Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterisation of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Tamura M, Ushijima K, Sassa H, Hirano H, Tao R, Gradziel TM, Dandekar AM (2000) Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor Appl Genet 101:344–349

    Article  CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori M, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach [Prunus persica (L.) Batsch] and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  CAS  PubMed  Google Scholar 

  • Tulseriam L, Compton WA, Morris R, Thomas-Compton M, Eskridge K (1992) Analysis of genetic recombination in maize populations using molecular markers. Theor Appl Genet 84:65–72

    CAS  Google Scholar 

  • Viruel MA, Messeguer R, De Vicente MC, Garcia-Mas J, Puigdomenech P, Vargas F, Arús P (1995) A linkage map with RFLP and isoenzyme markers for almond. Theor Appl Genet 91:964–971

    CAS  Google Scholar 

  • Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort 465:79–87

    CAS  Google Scholar 

  • Whitkus R (1998) Genetics of adaptative radiation in Hawaiian and Cook Island species of Tetramolopium (Asteraceae). II. Genetic linkage map and its implications for interspecific breeding barriers. Genetics 150:1209–1216

    CAS  PubMed  Google Scholar 

  • Williams CG, Goodman MM, Stuber CW (1995) Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics 141:1573–1581

    CAS  PubMed  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Dirlewanger, INRA Bordeaux, France, for providing results of polymorphism screening on the SD progeny, and the molecular data set used for the P. davidiana map, F. Pfeiffer, INRA Avignon, France, for his help in the development and preservation of the progenies studied, M. Lorieux, CIRAD Montpellier, France, for suggestions in statistical analysis and Lynda S. Hagen, INRA Avignon, for critical reading of the manuscript. We thank A. Lacombes from the INRA "Secteur linguistique" of Jouy-en-Josas for improving the english. This research was funded in part by grants from the Institut National de la Recherche Agronomique, France, and from Région Provence-Alpes-Côte d'Azur (projects 98/07354/00, 98/07589 and 99/11828).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kervella.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulongne, M., Pascal, T., Arús, P. et al. The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107, 227–238 (2003). https://doi.org/10.1007/s00122-003-1238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1238-8

Keywords

Navigation