Skip to main content

Advertisement

Log in

Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira®”

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The green peach aphid (GPA), Myzus persicae (Sulzer), is a widespread pest insect that significantly reduces yield in peach orchards [Prunus persica (L.) Batsch]. Chemical control of the GPA population in the orchards showed little efficiency because of the development of resistance to most classes of insecticides. Biological control partially gave convincing results. Breeding for resistant peach cultivars is therefore a serious option to take into account for the development of sustainable pest management. Among the few available resistance cultivars, the rootstock peach “Rubira®” shows a strong induced antixenosis-type GPA resistance. This was demonstrated segregating as a single dominant gene. In order to investigate the genetic basis of resistance and develop molecular tools useful in breeding programs, a F2 population derived from “Rubira®” also segregating for leaf color was grown and scored for GPA resistance under contrasted environmental conditions. An SSR-based genetic linkage map composed of 120 SSR loci spanned over a distance of 497.8 cM was then established. The GPA resistance mapped to a single locus at the bottom end of linkage group 1. We propose to name Rm2 the dominant allele of the underlying gene. Additionally, a reciprocal translocation was identified near the Gr gene controlling leaf color. The red-leaf parent “Rubira®” was demonstrated responsible for the translocation. This study provides the basis for future molecular analysis for the use of Rm2 in peach breeding programs against GPA in peach orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aranzana MJ, Garcia-Mas J, Carbó J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2005) Synteny in the Rosaceae. In: Janick J (ed) Plant breeding reviews. Wiley, New York, pp 175–211

    Google Scholar 

  • Barker E, Holaschke M, Fulton A, Evans K, Powell G (2007) Effects of kaolin particle film on Myzus persicae (Hemiptera: Aphididae) behaviour and performance. Bull Entomol Res 97:455–460

    Article  PubMed  CAS  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Genetics of actin-related sequences in tomato. Theor Appl Genet 72:314–321

    Article  CAS  Google Scholar 

  • Blake MA (1937) Progress in peach breeding. Proc Am Soc Hortic Sci 35:49–53

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world's crops. An identification and information guide, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Blenda A, Verde I, Georgi L, Reighard G, Forrest S, Muñoz-Torres M, Baird W, Abbott A (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341–350

    Article  Google Scholar 

  • Bus VGM, Chagné D, Basset HCM, Bowatte D, Calenge F, Celton JM, Durel CE, Malone MT, Patocchi A, Ratanunga AC, Rikkerink AHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to wooly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236

    Article  Google Scholar 

  • Bus VGM, Bassett HCM, Bowatte D, Chagné D, Ranatunga CA, Ulluwishewa D, Wiedow C, Gardiner SE (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genet Genomes 6:477–487

    Article  Google Scholar 

  • Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using SSRs. J Am Soc Hort Sci 126:205–209

    CAS  Google Scholar 

  • Cevik V, King GJ (2002) High resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet 105:346–354

    Article  PubMed  CAS  Google Scholar 

  • Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium “Napoleon”. Mol Ecol Notes 3:578–580

    Article  CAS  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Cravedi P, Cervato P (1997) Resistance to insecticides of the green peach aphid and Integrated Fruit Production guidelines. IOBC Bull 20(6):75–77

    Google Scholar 

  • Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S (2004) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol 78:83–92

    Article  CAS  Google Scholar 

  • Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    PubMed  CAS  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall P, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689

    Article  PubMed  CAS  Google Scholar 

  • Devonshire AL, Field LM, Foster SP, Moores GD, Williamson MS, Blackman LR (1998) The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Philos Trans R Soc Lond B Biol Sci 353:1677–1684

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O (2004) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid—location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1–13

    Article  Google Scholar 

  • Dogimont CA, Bendahmane A, Pitrat M et al. (2004) Gène de résistance à Aphys gossypii. World patent WO2004072109

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249

    Article  Google Scholar 

  • Downey LD, Iezzoni AF (2000) Polymorphic DNA markers in black cherry are identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hort Sci 125:76–80

    CAS  Google Scholar 

  • Evans K, Govan CL, Fernández-Fernández F (2008) A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers. Genome 51:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Fos A, Massonié G (1993) Transmission expérimentale du virus de la sharka par Brachycaudus persicae Passerini. Agronomie 13(6):515–518

    Article  Google Scholar 

  • Foster SP, Devine G, Devonshire AL (2007) Insecticide resistance. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Oxfordshire, pp 261–285

    Chapter  Google Scholar 

  • Foulongne M, Pascal T, Arús P, Kervella J (2003a) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107:227–238

    Article  PubMed  CAS  Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003b) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environment. Mol Breed 12:33–50

    Article  CAS  Google Scholar 

  • Gao L, Klingler JP, Anderson JP, Edwards OR, Singh KB (2008) Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol 146:996–1009

    Article  PubMed  CAS  Google Scholar 

  • Gentz MC, Murdoch G, King GF (2010) Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biol Control 52:208–215

    Article  Google Scholar 

  • Goggin FL, Shah G, Williamson VM, Ullman DE (2004) Developmental regulation of Mi-mediated aphid resistance is independent of Mi-1.2 transcript levels. Mol Plant Microbe Interact 17:532–536

    Article  PubMed  CAS  Google Scholar 

  • Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745

    Article  CAS  Google Scholar 

  • Hesse CO (1975) Peaches. In: Jannick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 285–335

    Google Scholar 

  • Hill CB, Li Y, Hartman GL (2006) A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Sci 46:1601–1605

    Article  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between “Garfi” almond and “Nemared” peach. Theor Appl Genet 102:1169–1176

    Article  Google Scholar 

  • Joobeur T, Periam N, de Vicente MC, King GJ, Arús P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655

    Article  PubMed  CAS  Google Scholar 

  • Kervella J, Pascal T, Pfeiffer F, Dirlewanger E (1998) Breeding for multiresistance in peach tree. Acta Hort 465:177–184

    Google Scholar 

  • Kfoury L, Massonié G (1995) Caractéristiques de la résistance du cultivar de pêcher Rubira® à Myzus persicae Sulzer. Agronomie 15(5):277–284

    Article  Google Scholar 

  • Klingler J, Creasy R, Gao L, Nair RM, Calix AS, Spattford Jacob H, Edwards OR, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    Article  PubMed  CAS  Google Scholar 

  • Klingler J, Edwards OR, Singh KB (2007) Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and bluegreen aphid in Medicago truncatula. New Phytol 173:630–640

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kruglyak L, Lander ES (1995) A non-parametric approach for mapping quantitative trait loci. Genetics 139:1421–1428

    PubMed  CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Shurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Lambert P, Hagen LS, Arus P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond ‘Texas’ x peach ‘Earlygold’ reference map for Prunus. Theor Appl Genet 108:1120–1130

    Article  PubMed  CAS  Google Scholar 

  • Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) ‘Polonais’ × ‘Stark Early Orange’ F1 progeny. Tree Genet Genomes 3:299–309

    Article  Google Scholar 

  • Lambert P, Sauge MH, Poëssel JL, Pascal T (2008) Pyramiding mono and polygenic resistances is one strategy to provide lasting control of the resistance to the green peach aphid and powdery mildew in peach. Fourth Rosaceae Conference, Pucon, 16–19 March 2008

  • Li Y, Hill C, Carlson S, Diers B, Hartman G (2007) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Mol Breed 19:25–34

    Article  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with Mapmaker/exp 3.0, 3rd edn. Whitehead Institute Technical Report, Cambridge

    Google Scholar 

  • Liu XM, Smith CM, Friebe BR, Gill BS (2005) Molecular mapping and allelic relationships of Russian wheat aphid-resistance genes. Crop Sci 45(6):2273–2280

    Article  CAS  Google Scholar 

  • Lopes MS, Sefc KM, Laimer M, Da Câmara MA (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26

    Article  CAS  Google Scholar 

  • Marandel G, Pascal T, Candresse T, Decroocq V (2009) Quantitative resistance to Plum pox virus in Prunus davidiana P1908 linked to components of the eukaryotic translation initiation complex. Plant Pathol 58:425–435

    Article  CAS  Google Scholar 

  • Massonié G, Maison P, Monet R, Grasselly C (1982) Résistance au puceron vert du pêcher, Myzus persicae Sulzer (Homoptera: Aphididae) chez Prunus persica (L) Batsch et d'autres espèces de Prunus. Agronomie 2:63–70

    Article  Google Scholar 

  • Mazzoni E, Cravedi P (2002) Analysis of insecticide-resistant Myzus persicae (Sulzer) populations collected in Italian peach orchards. Pest Manag Sci 58:975–980

    Article  PubMed  CAS  Google Scholar 

  • Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434

    Article  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root-knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166

    Article  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Arús P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Ecol Notes 5:531–535

    Article  CAS  Google Scholar 

  • Monet R, Massonié G (1994) Déterminisme génétique de la résistance au puceron vert (Myzus persicae) chez le pêcher. Résultats complémentaires. Agronomie 2:177–182

    Article  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587

    Article  PubMed  Google Scholar 

  • Pascal T, Pfeiffer F, Kervella J, Lacroze JP, Sauge MH (2002) Inheritance of green peach aphid resistance in the peach cultivar “Rubira®”. Plant Breed 121:459–461

    Article  Google Scholar 

  • Peck DC (2009) Long-term effects of imidacloprid on the abundance of surface and soil-active nontarget fauna in turf. Agr Forest Entomol 11:405–419

    Article  Google Scholar 

  • Pitrat M, Lecoq H (1980) Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathology 70:958–961

    Article  Google Scholar 

  • Poëssel JL, Corre M, Kervella J et al. (2002) Increase in phenolic content in the resistant peach cultivar “Rubira®” infested by the green peach aphid, Myzus persicae. In: El Hadrami, I (ed) XXI Int Conf on Polyphenols—Groupe Polyphenols Publisher, Montpellier (FRA) vol 1:131–132

  • Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503–510

    Article  CAS  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VW (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A 95:9750–9754

    Article  PubMed  CAS  Google Scholar 

  • Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291–304

    Article  Google Scholar 

  • Sauge MH, Kervella J, Rahbé Y (1998a) Probing behaviour of the green peach aphid Myzus persicae on resistant Prunus genotypes. Entomol Exp Appl 89:223–232

    Article  Google Scholar 

  • Sauge MH, Kervella J, Pascal T (1998b) Settling behaviour and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus. Entomol Exp Appl 89:233–242

    Article  Google Scholar 

  • Sauge MH, Lacroze JP, Poëssel JL, Pascal T, Kervella J (2002) Induced resistance by Myzus persicae in the peach cultivar “Rubira®”. Entomol Exp Appl 102:29–37

    Article  Google Scholar 

  • Sauge MH, Pascal T, Lacroze JP, Pfeiffer F, Kervella J et al (2004) Mapping of a genetic factor of partial resistance to Myzus persicae in the wild peach Prunus davidiana, that impedes phloem sap ingestion by the aphid. In: Simon JC, Dedryver CA, Rispe C (eds) Aphids in a new millennium. INRA Editions, Versailles, pp 499–505

    Google Scholar 

  • Sauge MH, Mus F, Lacroze JP, Pascal T, Kervella J, Poëssel JL (2006) Genotypic variation in induced resistance and induced susceptibility in the peach-Myzus persicae aphid system. Oikos 113:305–313

    Article  Google Scholar 

  • Sicard O, Marandel G, Soriano JM, Lalli DA, Lambert P, Salava J, Badenes M, Abbott A, Decroocq V (2008) Flanking the major Plum pox virus resistance locus in apricot with co-dominant markers (SSRs) derived from candidate resistance genes. Tree Genet Genomes 4:359–365

    Article  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica L. Batsch). Theor Appl Genet 101:421–42

    Article  CAS  Google Scholar 

  • Tagu D, Klingler JP, Moya A, Simon JC (2008) Early progress in aphid genomics and consequences for plant–aphid interactions studies. MPI 21(6):701–708

    CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori M, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    PubMed  CAS  Google Scholar 

  • Testolin R, Messina R, Lain O, Marrazzo MT, Huang WG, Cipriani G (2004) Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4:459–461

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

  • Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the Prunus persica [L. (Batsch)] × P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW (2007) Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J 51:803–818

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Shi YZ, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301

    Article  CAS  Google Scholar 

  • Yamamoto T, Hayashi T (2002) New root-knot nematode resistance genes and their STS markers in peach. Sci Hortic 96:81–90

    Article  CAS  Google Scholar 

  • Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Jpn Soc Hort Sci 74:204–213

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge A. Bachellez, E. Lecerf, and X. Titeca for the technical assistance and the International Peach Initiative Consortium (IPGI) for the early release of the peach genome sequence v1.0. All experiments described in this paper comply with the current laws in the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Lambert.

Additional information

Communicated by A. Abbott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, P., Pascal, T. Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira®”. Tree Genetics & Genomes 7, 1057–1068 (2011). https://doi.org/10.1007/s11295-011-0394-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0394-2

Keywords

Navigation