Skip to main content
Log in

Improving the quality of African robustas: QTLs for yield- and quality-related traits in Coffea canephora

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Coffea canephora breeding requires combining sustainable productivity with improved technological and cup quality characteristics. Beverage quality is a complex and subjective trait, and breeding for this trait is time consuming and depends on knowledge of the genetics of its components. A highly variable C. canephora progeny resulting from an intraspecific cross was assessed for 63 traits over 5 years. To identify quantitative trait loci (QTLs) controlling agronomic, technological, and quality-related traits, a genetic map comprising 236 molecular markers was constructed, and composite interval mapping was performed. Beverage quality was evaluated in relation to biochemical and cup tasting traits. QTLs were identified for almost half of the traits evaluated, with effects ranging from 6% to 80% of phenotypic variation. Most of them present a consistent detection over years. The strongest QTLs explained a high percentage of the variation for yield in 2006 (34% to 57%), bean size (25% to 35%), content of chlorogenic acids (22% to 35%), sucrose and trigonelline content (29% to 81%), and acidity and bitterness of coffee beverages (30% to 55%). Regions of the C. canephora genome influencing beverage quality were identified. Five QTL zones were co-localized with candidate genes related to the biosynthesis of the analyzed traits: two genes coding for caffeine biosynthesis, one gene implicated in the biosynthesis of chlorogenic acids, and two genes implicated in sugar metabolism. This is one of the first studies on the identification of QTLs combining agronomic and quality traits in coffee. The high variability of quality traits within C. canephora and the presence of consistent QTLs offer breeders a promising tool to improve coffee cup quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait loci

MAS:

Marker-assisted selection

Y_200X :

Yield for the year 200X

CY_200X/Y :

Cumulated yield from year 200X to 200Y

BS:

Bean size

PB:

Rate of pea berries

CA:

Caffeine content

TR:

Trigonelline content

SU:

Sucrose content

3C:

3-Caffeoylquinic acid content (3-CQA)

4C:

4-Caffeoylquinic acid content (4-CQA)

5C:

5-Caffeoylquinic acid content (5-CQA)

5F:

5-Feruloylquinic acid content (5-FQA)

34dC:

3,4-Dicaffeoylquinic acid (3,4di-CQA)

35dC:

3,5-Dicaffeoylquinic acid (3,5di-CQA)

45dC:

4,5-Dicaffeoylquinic acid (4,5di-CQA)

FR:

Fragrance

AR:

Aroma

BO:

Body

FL:

Flavor

AC:

Acidity

BI:

Bitterness

AF:

Aftertaste

GL:

Global note

LG:

Linkage group

References

  • Akaffou DS, Ky CL, Barre P, Hamon S, Louarn J, Noirot M (2003) Identification and mapping of a major gene (Ft1) involved in fructification time in the interspecific cross Coffea pseudozanguebariae x C. liberica var. Dewevrei: impact on caffeine content and seed weight. Theor Appl Genet 106:1486–1490

    PubMed  CAS  Google Scholar 

  • Alcazar A, Jurad JM, Martin MJ, Pablos F, Gonzales AG (2004) Enzymatic-spectrophotometric determination of sucrose in coffee beans. Talanta 67:760–766

    Article  Google Scholar 

  • Anthony F, Clifford MN, Noirot M (1993) Biochemical diversity in the genus Coffea L.: chlorogenic acids, caffeine and mozambioside contents. Genet Res Crop Evol 40:61–70

    Article  Google Scholar 

  • Anthony F, Bertrand B, Quiros O, Wilches A, Lashermes P, Berthaud J, Charrier A (2001) Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers. Euphytica 118:53–65

    Article  CAS  Google Scholar 

  • Barre P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (1998) Inheritance of caffeine and heteroside contents in an interspecific cross between a cultivated coffee species Coffea liberica var dewevrei and a wild species caffeine-free C. pseudozanguebariae. Theor Appl Genet 96:306–311

    Article  CAS  Google Scholar 

  • Baruah A, Naik V, Hendre PS, Rajkumar R, Rajendrakumar P, Aggarwal K (2003) Isolation and characterization of nine microsatellite markers from Coffea arabica L. showing wide cross-species amplifications. Mol Ecol Notes 3:647–650

    Article  CAS  Google Scholar 

  • Berthaud J (1986) Les ressources génétiques pour l'amélioration des caféiers africains diploïdes. Evaluation de la richesse génétique des populations sylvestres et de ses mécanismes organisateurs. Conséquences pour l'application. ORSTOM, Paris

  • Bertrand B, Guyot B, Anthony F, Lashermes P (2003a) Impact of the Coffea canephora gene introgression on beverage quality of C. Arabica. Theor Appl Genet 107:387–394

    Article  PubMed  CAS  Google Scholar 

  • Bertrand C, Noirot M, Doulbeau S, de Kochko A, Hamon S, Campa C (2003b) Chlorogenic acid content swap during fruit maturation in Coffea pseudozanguebariae. Quantitative comparison with leaves. Plant Sci 165:1355–1361

    Article  CAS  Google Scholar 

  • Billote N, Marseillac N, Risterucci AM et al (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765

    Article  Google Scholar 

  • Bouchet S, Marraccini P, Jourdan I, Leroy T, Vieira LGE, Ferreira LP, Musoli P, Pot D (2005) Nucleotide diversity and molecular evolution of five genes involved in the sucrose biosynthesis pathway of Coffea canephora. In: Proceedings of the 4th Plant Genomics European Meeting, Amsterdam, 20–23 Sept 2005

  • Campa C, Noirot M, Bourgeois M, Pervent M, Ky CL, Chrestin H, Hamon S, de Kochko A (2003) Genetic mapping of a caffeoyl-coenzyme A 3-0-methltransferase gene in coffee trees. Impact on chlorogenic acid content. Theor Appl Genet 107:751–756

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Saliba V, Lesschaeve I, Buret M (2000) Genetic analysis of organoleptic quality in fresh-market tomato. 2. Mapping QTLs for sensory attributes. Theor Appl Genet 102:257–272

    Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Charrier A, Berthaud J (1988) Principles and methods in coffee plant breeding Coffea canephora Pierre. In: Clarke RJ, Macrae R (eds) Coffee, vol 4, Agronomy. Elsevier Applied Science, London, pp 167–197

    Google Scholar 

  • Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, Grasiozi G, Lashermes P (2000) Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol Notes 9:1171–1193

    Google Scholar 

  • Coulibaly I, Revol B, Noirot M, Poncet V, Lorieux M, Carasco-Lacombe C, Minier J, Hamon P (2003) AFLP and SSR polymorphism in a Coffea interspecific backcross progeny ((C. heterocalyx x C. canephora) x C. canephora). Theor Appl Genet 107:1148–1155

    Article  PubMed  CAS  Google Scholar 

  • D’Aoust MA, Yelle S, Nguyen-Quoc B (1999) Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11:2407–2418

    Article  PubMed  Google Scholar 

  • Dussert D, Lashermes P, Anthony F, Montagnon C, Trouslot P, Combes MC, Berthaud J, Noirot M, Hamon S (1999) Le caféier, Coffea canephora. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Diversité génétique des plantes tropicales cultivées. CIRAD, Montpellier, pp 175–194

    Google Scholar 

  • Freire LP, Vieira NG, Vinecky F, Alvas GSC, Leroy T, Pot D, Elbelt S, Marques T, Rodrigues GC, Marraccini P, Andrade AC (2010). Expression analysis and nucleic polymorphism of candidate genes for drought tolerance in coffee (in press)

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Geromel C, Ferreira LP, Guerreiro SMC, Cavalari AA, Pot D, Pereira LFP, Leroy T, Vieira LGE, Mazzafera P, Marraccini P (2006) Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J Exp Bot 57:3243–3258

    Article  PubMed  CAS  Google Scholar 

  • Geromel C, Ferreira LP, Davrieux F, Guyot B, Ribeyre F, dos Santos Scholz MB, Pereira LFP, Vaast P, Pot D, Leroy T, Androcioli Filho A, Vieira LGE, Mazzafera P, Marraccini P (2008) Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiol Biochem 46:569–579

    Article  PubMed  CAS  Google Scholar 

  • Gomez C, Dussert S, Hamon P, Hamon S, de Kochko A, Poncet V (2009) Current genetic differentiation of Coffea canephora Pierre ex A. Froehn in the Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:167

    Article  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-test cross mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Henery ML, Moran GF, Wallis IR, Foley WJ (2007) Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. New Phytol 176:82–95

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, de Kochko A, Dussert S (2009) Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study. New Phytol 182:146–162

    Article  PubMed  Google Scholar 

  • Joët T, Salmona J, Laffargue A, Descroix F, Dussert S (2010) Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation. Plant Cell Environ 33:1220–1233

    PubMed  Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Gen 4:647–661

    Article  Google Scholar 

  • Klann EM, Hall B, Bennett AB (1996) Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol 112:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Ky CL, Louarn J, Guyot B, Charrier A, Hamon S, Noirot M (1999) Relations between and inheritance of chlorogenic acid contents in an interspecific cross between Coffea pseudozanguebariae and Coffea liberica var ‘dewevrei’. Theor Appl Genet 98:628–637

    Article  CAS  Google Scholar 

  • Ky CL, Doulbeau S, Guyot B, Akaffou S, Charrier A, Hamon S, Louarn J, Noirot M (2000a) Inheritance of coffee bean sucrose content in the interspecific cross Coffea pseudozanguebariae x Coffea liberica ‘dewevrei’. Plant Breed 119:165–168

    Article  Google Scholar 

  • Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000b) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676

    Article  CAS  Google Scholar 

  • Ky CL, Louarn J, Dussert S, Guyot B, Hamon S, Noirot M (2001a) Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem 75:223–230

    Article  CAS  Google Scholar 

  • Ky CL, Guyot B, Louarn J, Hamon S, Noirot M (2001b) Trigonelline inheritance in the interspecific Coffea pseudozanguebariae x C. liberica var. dewevrei cross. Theor Appl Genet 102:630–634

    Article  CAS  Google Scholar 

  • Lashermes P, Couturon E, Moreau N, Paillard M, Louarn J (1996) Inheritance and genetic mapping of self -incompatibility in Coffea canephora Pierre. Theor Appl Genet 93:458–462

    Article  CAS  Google Scholar 

  • Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596

    PubMed  CAS  Google Scholar 

  • Lefebvre-Pautigny F, Wu F, Philippot M, Rigoreau M, Priyono ZM, Frasse P, Bouzayen M, Broun P, Pétiard V, Tanksley SD, Crouzillat D (2010) High resolution syntheny maps allowing direct comparisons between the coffee and tomato genome. Tree Genet Gen 6:565–577

    Article  Google Scholar 

  • Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J (2007) Chlorogenic acid syntheses in coffee: An analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci 172:978–996

    Article  CAS  Google Scholar 

  • Leroy T, Montagnon C, Charrier A, Eskes AB (1993) Reciprocal recurrent selection applied to Coffea canephora Pierre I. Characterization and evaluation of breeding populations and value of intergroup hybrids. Euphytica 67:113–125

    Article  Google Scholar 

  • Leroy T, Montagnon C, Cilas C, Charrier A, Eskes AB (1994) Reciprocal recurrent selection applied to Coffea canephora Pierre II. Evaluation of genetic parameters. Euphytica 74:121–128

    Article  Google Scholar 

  • Leroy T, Marraccini P, Dufour M, Montagnon C, Lashermes P, Sabau X, Ferreira LP, Jourdan I, Pot D, Andrade AC, Glaszmann JC, Vieira LGE, Piffanelli P (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111:1032–1041

    Article  PubMed  CAS  Google Scholar 

  • Leroy T, Ribeyre F, Bertrand B, Charmetant P, Dufour M, Montagnon C, Marraccini P, Pot D (2006) Genetics of coffee quality. Braz J Plant Physiol 18:229–242

    Article  CAS  Google Scholar 

  • Lin C, Mueller LA, Mc Carthy J, Crouzillat D, Pétiard V, Tanksley S (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 112:114–130

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Misako K, Kouichi M (2004) Caffeine synthase and related methyltransferases in plants. Front Biosci 9:1833–1842

    Article  PubMed  Google Scholar 

  • Moncada P, McCouch S (2004) Simple sequences repeat diversity in diploid and tetraploid Coffea species. Genome 47:501–509

    Article  PubMed  CAS  Google Scholar 

  • Montagnon C, Leroy T, Yapo A (1992) Diversité génotypique et phénotypique de quelques groupes de caféiers (Coffea canephora Pierre) en collection. Conséquences sur leur utilisation en sélection. Café Cacao Thé 36:187–198

    Google Scholar 

  • Montagnon C, Guyot B, Cilas C, Leroy T (1998) Genetic parameters of several biochemical compounds from green coffee, Coffea canephora. Plant Breed 117:576–578

    Article  CAS  Google Scholar 

  • Montagnon C, Leroy T, Cilas C, Charrier A (2003) Heritability of Coffea canephora yield estimated from several mating designs. Euphytica 133:209–218

    Article  Google Scholar 

  • Moschetto D, Montagnon C, Guyot B, Perriot JJ, Leroy T, Eskes AB (1996) Studies on the effect of genotype on cup quality of Coffea canephora. Trop Sci 36:18–31

    Google Scholar 

  • N’Diaye A, Noirot M, Hamon S, Poncet V (2007) Genetic basis of species differentiation between Coffea liberica Hiern and C. canephora Pierre: analysis of an interspecific cross. Genet Resour Crop Evol 54:1011–1021

    Article  Google Scholar 

  • Paillard M, Lashermes P, Pétiard V (1996) Construction of a molecular linkage map in coffee. TheorAppl Genet 93:41–47

    Article  CAS  Google Scholar 

  • Poncet V, Hamon P, Minier J, Carasco C, Hamon S, Noirot M (2004) SSR cross-amplification and variation within coffee trees (Coffea spp.). Genome 47:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Poncet V, Dufour M, Hamon P, Hamon S, de Kochko A, Leroy T (2007) Development of genomic microsatellite markers in Coffea canephora and their transferability to other coffee species. Genome 50:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Priyono FB, Rigoreau M, Ducos JP, Sumirat U, Mawardi S, Lambot C, Broun P, Pétiard V, Wahyudi T, Crouzillat D (2010) Somatic embryogenesis and vegetative cutting capacity are under distinct control in Coffea canephora Pierre. Plant Cell Rep 29:343–357

    Article  PubMed  CAS  Google Scholar 

  • Risterucci AM, Grivet L, N’Goran JAK et al (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955

    Article  CAS  Google Scholar 

  • Saliba V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh-market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:273–283

    Article  Google Scholar 

  • Segura V, Durel CE, Costes E (2009) Dissecting apple architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet Gen 5:165–179

    Article  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4 software for the calculation of genetic linkage maps. Kyazma BV, Wageningen

    Google Scholar 

  • Venkateswarlu M, Urs SR, Nath BS, Shashidar HE, Maheswaran M, Veeraiah TM, Sabitha MG (2006) A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR and SRR markers and pseudo testcross mapping strategy. Tree Genet Gen 3:15–24

    Article  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wintgens JN (2004) Coffee: growing, processing, sustainable production A guidebook for growers, processors, traders, and researchers. Wiley-VCG Verlag GmbH & Co., Weinheim

    Book  Google Scholar 

  • Xu S (2008) QTL mapping can benefit from segregation distortion. Genetics 180:2201–2208

    Article  PubMed  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

  • Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J (2010) Effects of missing markers and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet. doi:10.1007/s00122-010-1372-z

    Google Scholar 

Download references

Acknowledgments

This work was supported by EU grant ICA4-CT-2001-10068. The University of Trieste (Italy) kindly provided 16 SSR markers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Leroy.

Additional information

Communicated by D. Grattapaglia

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Quantitative trait analysis: number of productive trees, mean, standard deviation (SD), minimum and maximum values for yield, technological, biochemical, and organoleptic traits. Means for parents are presented (XLS 31 kb)

Table S2

Phenotypic correlations for the 63 traits analyzed (Pearson’s correlation test). Only significant correlations are shown (**P<0.01 in gray; *P<0.05). (ns) not significant (XLS 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leroy, T., De Bellis, F., Legnate, H. et al. Improving the quality of African robustas: QTLs for yield- and quality-related traits in Coffea canephora . Tree Genetics & Genomes 7, 781–798 (2011). https://doi.org/10.1007/s11295-011-0374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0374-6

Keywords

Navigation