Skip to main content
Log in

Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The first bacterial artificial chromosome (BAC) library of Robusta coffee (Coffea canephora) was constructed, with the aim of developing molecular resources to study the genome structure and evolution of this perennial crop. Clone 126, which is highly productive and confers good technological and organoleptic qualities of beverage, was chosen for development of this library. The BAC library contains 55,296 clones, with an average insert size of 135 Kb per plasmid, therefore representing theoretically nine haploid genome equivalents of C. canephora. Its validation was achieved with a set of 13 genetically anchored single-copy and 4 duplicated RFLP probes and yielded on average 9 BAC clones per probe. Screening of this BAC library was also carried out with partial cDNA probes coding for enzymes of sugar metabolism like invertases and sucrose synthase, with the aim of characterizing the organization and promoter structure of this important class of genes. It was shown that genes for both cell wall and vacuolar forms of invertases were probably unique in the Robusta genome whereas sucrose synthase was encoded by at least two genes. One of them (CcSUS1) was cloned and sequenced, showing that our BAC library is a valuable tool to rapidly identify genes of agronomic interest or linked to cup quality in C. canephora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaffou DS, Ky CL, Barre P, Hamon S, Louarn J, Noirot M (2003) Identification and mapping of a major gene (Ft1) involved in fructification time in the interspecific cross Coffea pseudozanguebariae × C liberica var Dewevrei: impact on caffeine content and seed weight. Theor Appl Genet 106:1486–1490

    Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409

    Article  PubMed  Google Scholar 

  • Clément D, Lanaud C, Sabau X, Fouet O, Le Cunff L, Ruiz E, Risterucci AM, Glaszmann JC, Piffanelli P (2004) Creation of BAC genomic resources for cocoa (Theobroma cacao L.) for physical mapping of RGA containing BAC clones. Theor Appl Genet 108:1627–1634

    Article  PubMed  Google Scholar 

  • Clifford MN (1985) Chemical and physical aspects of green coffee and coffee products. In: Clifford MN, Wilson KC (eds) Coffee, Botany, Biochemistry and Production of Beans and Beverage. Publishing Company Inc., Westport, pp 305–374

    Google Scholar 

  • Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, Grasiozi G, Lashermes P (2000) Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol 9:1171–1193

    Article  PubMed  Google Scholar 

  • Cros J, Combes MC, Chabrillange N, Duperray C, Monnot des Angles A, Hamon S (1995) Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Can J Bot 73:14–20

    Google Scholar 

  • De Maria CAB, Trugo LC, Moreira RFA, Werneck CC (1994) Composition of green coffee fractions and their contribution to the volatile profile formed during roasting. Food Chem 50:141–145

    Article  Google Scholar 

  • Dufour M, Hamon P, Noirot M, Risterucci AM, Brottier P, Vico V, Leroy T (2001) Potential use of SSR markers for Coffea spp. genetic mapping. In: Proceedings of the 19th international colloquium on coffee science ASIC. CD-ROM, ASIC, Paris (France)

  • Fu H, Park WD (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell 7:1369–1385

    Article  PubMed  Google Scholar 

  • Geromel C, Ferreira LP, Cavalari AA, Pereira LFP, Vieira LGE, Leroy T, Mazzafera P, Marraccini P (2004) Sugar metabolism during coffee fruit development. In: Proceedings of the 20th international colloquium on coffee science ASIC. CD-ROM, ASIC, Paris (France)

  • Guyot B, Petnga E, Vincent JC (1988) Analyse qualitative d’un café Coffea canephora var Robusta en fonction de la maturité Partie I Evolution des caractéristiques physiques, chimiques et organoleptiques. Café Cacao Thé 32:127–130

    Google Scholar 

  • Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenic relationships. J Exp Bot 53:61–71

    Article  PubMed  Google Scholar 

  • Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676

    Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    Article  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596

    Article  PubMed  Google Scholar 

  • Leroy T, Henry AM, Royer M, Altosaar I, Frutos R, Duris D, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensiscry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

    Article  Google Scholar 

  • Marraccini P, Pereira LFP, Ferreira LP, Vieira LGE, Cavalari AA, Geromel C, Mazzafera P (2003) Biochemical and molecular characterization of enzyme controlling sugar metabolism during coffee bean development. In: Proceedings of the 7th international symposium of plant molecular biology ISPMB. Poster S19–14, Barcelona (Spain)

  • Masojc P (2002) The application of molecular markers in the process of selection. Cell Mol Biol Lett 7:499–509

    PubMed  Google Scholar 

  • Montagnon C (2000) Optimisation des gains génétiques dans le schéma de sélection récurrente réciproque de Coffea canephora Pierre. Ph. D Thesis, ENSA Montpellier (France)

  • Montagnon C, Guyot B, Cilas C, Leroy T (1998) Genetic parameters of several biochemical compounds from green coffee, Coffea canephora. Plant Breed 117:576–578

    Google Scholar 

  • Moschetto D, Montagnon C, Guyot B, Perriot JJ, Leroy T, Eskes AB (1996) Studies on the effect of genotype on cup quality of Coffea canephora. Trop Sci 36:18–31

    Google Scholar 

  • Noir S, Anthony F, Bertrand B, Combes MC, Lashermes P (2003) Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica. Plant Pathol 52:97–103

    Article  Google Scholar 

  • Noir S, Patheyron S, Combes MC, Lashermes P, Chalhoub B (2004) Construction and characterization of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L). Theor Appl Genet 109:225–230

    Google Scholar 

  • Paillard M, Lashermes P, Pétiard V (1996) Construction of a molecular linkage map in coffee. Theor Appl Genet 93:41–47

    Google Scholar 

  • Pearl HM, Nagai C, Moore PH, Steiger DL, Osgood RV, Ming R (2004) Construction of a genetic map for arabica coffee. Theor Appl Genet 108:829–835

    Google Scholar 

  • Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Reg 32:359–367

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York,

    Google Scholar 

  • Sera T (2001) Coffee genetic breeding at IAPAR. Crop Breed Appl Biotechnol 1:179–199

    Google Scholar 

  • Strong SJ, Ohta Y, Litman GW, Amemiya CT (1997) Marked improvement of PAC and BAC cloning is achieved using electroelution of pulsed-field gel-separated partial digests of genomic DNA. Nucleic Acids Res 25:3959–3961

    Article  PubMed  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67

    Google Scholar 

  • Wormer TM (1964) The growth of the coffee berry. Ann Bot 28:47–55

    Google Scholar 

  • Zhang H-B, Zhao X, Ding X, Paterson AH, Wing RA (1995) Preparation of megabase-size DNA from plant nuclei. Plant J 7:175–184

    Article  Google Scholar 

  • Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of a crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L). Plant J 7:97–107

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the robotic team of CIRAD for the management of the BAC library. We are also very grateful to K. Avia for his help concerning gene mapping. The work was supported by the French Embassy in Brazil (DCSUR-BRE-4C5-008) to P. Marraccini. T. Leroy should be contacted for further information about the access to the BAC library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Leroy.

Additional information

Communicated by H. Nybom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leroy, T., Marraccini, P., Dufour, M. et al. Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111, 1032–1041 (2005). https://doi.org/10.1007/s00122-005-0018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0018-z

Keywords

Navigation