Skip to main content

Advertisement

Log in

Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas strains are increasingly attracting considerable attention as a valuable bacterial host both for basic and applied research. It has been considered as a promising candidate to produce a variety of bioactive secondary metabolites, particularly phenazines. Apart from the biotechnological perspective, these aromatic compounds have the notable potential to inhibit plant-pathogenic fungi and thus are useful in controlling plant diseases. Nevertheless, phenazines production is quite low by the wild-type strains that necessitated its yield improvement for large-scale agricultural applications. Metabolic engineering approaches with the advent of plentiful information provided by systems-level genomic and transcriptomic analyses enabled the development of new biological agents functioning as potential cell factories for producing the desired level of value-added bioproducts. This study presents an up-to-date overview of recombinant Pseudomonas strains as the preferred choice of host organisms for the biosynthesis of natural phenazines. The biosynthetic pathway and regulatory mechanism involved in the phenazine biosynthesis are comprehensively discussed. Finally, a summary of biological functionalities and biotechnological applications of the phenazines is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bongaerts J, Esser S, Lorbach V et al (2011) Diversity-oriented production of metabolites derived from chorismate and their use in organic synthesis. Angew Chem Int Edit 123:7927–7932

    Article  Google Scholar 

  • Chen M, Cao H, Peng H, Hu H, Wang W, Zhang X (2014) Reaction kinetics for the biocatalytic conversion of phenazine-1-carboxylic acid to 2-hydroxyphenazine. PLoS ONE 9:e98537

    Article  Google Scholar 

  • Chen Y, Shen X, Peng H, Hu H, Wang W, Zhang X (2015) Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genom Data 4:33–42

    Article  Google Scholar 

  • Chin-A-Woeng TF, van den Broek D, de Voer G et al (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol. Plant-Microbe Interact 14:969–979

    Article  CAS  Google Scholar 

  • Dasgupta D, Kumar A, Mukhopadhyay B, Sengupta TK (2015) Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Appl Microbiol Biotechnol 99:8653–8665

    Article  CAS  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30–84. J Bacteriol 183:318–327

    Article  CAS  Google Scholar 

  • Du X, Li Y, Zhou W, Zhou Q, Liu H, Xu Y (2013) Phenazine-1-carboxylic acid production in a chromosomally non-scar triple-deleted mutant Pseudomonas aeruginosa using statistical experimental designs to optimize yield. Appl Microbiol Biotechnol 97:7767–7778

    Article  CAS  Google Scholar 

  • Girard G, van Rij ET, Lugtenberg BJJ (2006) Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL. Microbiology 152 1391:43–58

    Article  Google Scholar 

  • Greenhagen BT, Shi K, Robinson H, Gamage S, Bera AK, Ladner JE, Parsons JF (2008) Crystal structure of the pyocyanin biosynthetic protein PhzS. BioChemistry 47:5281–5289

    Article  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  CAS  Google Scholar 

  • Guo S, Wang Y, Dai B, Wang W, Hu H, Huang X, Zhang X (2017) PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66. Appl Microbiol Biotechnol 101:7165–7175

    Article  CAS  Google Scholar 

  • Guttenberger N, Blankenfeldt W, Breinbauer R (2017) Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem S0968-0896:31180–31844

    Google Scholar 

  • Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:046–1056

    Article  Google Scholar 

  • Hu HB, Yu QX, Feng C, Xue HZ, Hur BK (2005) Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin. J Microbiol Biotechnol 15:86–90

    CAS  Google Scholar 

  • Hu H, Li Y, Liu L, Zhao J, Wang W, Zhang X (2017) Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol. doi:10.1007/s00253-017-8408-0

    Google Scholar 

  • Huang L, Chen M, Wang W, Hu H, Peng H, Xu Y, Zhang X (2010) Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Eur J Appl Microbiol Biotechnol 89(1):169–177

    Article  Google Scholar 

  • Huang L, Chen MM, Wang W et al (2011) Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 89:169–177

    Article  CAS  Google Scholar 

  • Jeykumari DRS, Narayanan SS (2007) Covalent modification of multiwalled carbon nanotubes with neutral red for the fabrication of an amperometric hydrogen peroxide sensor. Nanotechnology 18:125501–125510

    Article  Google Scholar 

  • Jin K, Zhou L, Jiang H, Sun S, Fang Y, Liu J, Zhang X, He YW (2015) Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production. Metab Eng 32:30–38

    Article  CAS  Google Scholar 

  • Jin XJ, Peng HS, Hu HB, Huang XQ, Wang W, Zhang XH (2016) iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3. Sci Rep 6:27393

    Article  CAS  Google Scholar 

  • Kerr JR, Taylor GW, Rutman A, Hoiby N, Cole PJ, Wilson R (1999) Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52(5):385–387

    Article  CAS  Google Scholar 

  • Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K (2012) Production of Aromatic Compounds by Metabolically Engineered Escherichia coli with an Expanded Shikimate Pathway. Appl Biochem Biotechnol 78:6203–6216

    CAS  Google Scholar 

  • Li Y, Jiang H, Xu Y, Zhang X (2008) Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77:1207–1217

    Article  CAS  Google Scholar 

  • Liu HM, Zhang XH, Huang XQ, Cao CX, Xu YQ (2008) Rapid quantitative analysis of phenazine-1-carboxylic acid and 2-hydroxyphenazine from fermentation culture of Pseudomonas chlororaphis GP72 by capillary zone electrophoresis. Talanta 76(2):276–281

    Article  CAS  Google Scholar 

  • Liu K, Hu H, Wang W, Zhang X (2016) Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2‑Hydroxyphenazine. Microb Cell Fact 15:131

    Article  Google Scholar 

  • Martinez JA, Bolivar F, Escalante A (2015) Shikimic acid production in Escherichia coli: from classical metabolic engineering strategies to omics applied to improve its production. Front Bioeng Biotechnol 3:145

    Google Scholar 

  • Mavrodi DV, Peever TL, Mavrodi OV et al (2001) Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  Google Scholar 

  • Meade TJ (1994) Synthesis of aromatic heterocyclic polymers from a biosynthetically prepared precursor. US Patent 5,340,913

  • Mentel M, Ahuja EG, Mavrodi DV et al (2009) Of two make one: the biosynthesis of phenazines. ChemBioChem 10:2295–2304

    Article  CAS  Google Scholar 

  • Murray TS, Egan M, Kazmierczak BI (2007) Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr 19:83–88

    Article  Google Scholar 

  • Palko M, Kiss L, Fulop F (2005) Syntheses of hydroxylated cyclic β-amino acid derivatives. Curr Med Chem 12:3063–3083

    Article  CAS  Google Scholar 

  • Pham TH, Boon N, De Maeyer K et al (2008) Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol 80:985–993

    Article  CAS  Google Scholar 

  • Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  CAS  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84. Mol Plant-Microbe Interact 5:330–339

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408

    Article  CAS  Google Scholar 

  • Rodrigue A, Quentin Y, Lazdunski A et al (2000) Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many. Trends Microbiol 8:498–504

    Article  CAS  Google Scholar 

  • Ryazanova OA, Voloshin IM, Makitruk VL et al (2007) pH-induced changes in electronic absorption and fluorescence spectra of phenazine derivatives. Spectrochim Acta Mol Biomol Spectrosc 66:849–859

    Article  CAS  Google Scholar 

  • Sanderson DG, Gross EL, Seibert M (1987) A photosynthetic photoelectrochemical cell using phenazine methosulfate and phenazine ethosulfate as electron acceptors. Appl Microbiol Biotechnol 14:1–12

    CAS  Google Scholar 

  • Shanmugaiah V, Mathivanan N, Varghes B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711

    Article  CAS  Google Scholar 

  • Shen X, Hu H, Peng H, Wang W, Zhang X (2013) Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:271

    Article  CAS  Google Scholar 

  • Shtark O, Shaposhnikov AI, Kravchenko LV (2003) The production of antifungal metabolites by Pseudomonas chlororaphis grown on different nutrient sources. Microbiologia 72:645–650

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Liquid culture carbon, nitrogen and inorganic phosphate source regulate nematicidal activity by fluorescent pseudomonads in vitro. Lett Appl Microbiol 38:185–190

    Article  CAS  Google Scholar 

  • Slininger PJ, Jackson MA (1992) Nutritional factors regulating growth and accumulation of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 37:388–392

    Article  CAS  Google Scholar 

  • Slininger PJ, Shea-Wilbur MA (1995) Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 43:794–800

    Article  CAS  Google Scholar 

  • Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1:514–525

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    Article  CAS  Google Scholar 

  • Wang M, Xing Y, Wang J, Xu Y, Wang G (2014) The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take-all. Can J Microbiol 60:533–540

    Article  CAS  Google Scholar 

  • Wang A, Wei X, Rong W et al (2015) GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat. Funct Integr Genomics 15:375–381

    Article  Google Scholar 

  • Wang D, Yu JM, Dorosky RJ, Pierson LS 3rd, Pierson EA (2016) The phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30–84. PLoS ONE 26(1):11 e0148003.

    CAS  Google Scholar 

  • Whistler CA, Pierson LS III (2003) Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30–84 by RpeA. J Bacteriol 185:3718–3725

    Article  CAS  Google Scholar 

  • Zhao Y, Qian G, Ye Y et al (2016) Heterocyclic Aromatic N-Oxidation in the Biosynthesis of Phenazine Antibiotics from Lysobacter antibioticus. Org Lett 18:2495–2498

    Article  CAS  Google Scholar 

  • Zhao Q, Bilal M, Yue S, Hu H, Wang W, Zhang X (2017a) Identification of a novel Biphenyl 2, 3-dioxygenase and its catabolic role for phenazine degradation in Sphingobium yanoikuyae B1. J Environ Manag 204:494–501

    Article  CAS  Google Scholar 

  • Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X (2017b) Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Sci Total Environ 576:646–659

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (21377082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Guo, S., Iqbal, H.M.N. et al. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World J Microbiol Biotechnol 33, 191 (2017). https://doi.org/10.1007/s11274-017-2356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2356-9

Keywords

Navigation