Skip to main content
Log in

Production of squalene by microbes: an update

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Squalene, a naturally occurring linear triterpene formed via MVA or MEP biosynthetic pathway, is widely distributed in microorganisms, plants and animals. At present, squalene is used extensively in the food, cosmetic and medicine industries because of its antioxidant, antistatic and anti-carcinogenic properties. Increased consumer demand has led to the development of microbial bioprocesses for the commercial production of squalene, in addition to the traditional methods of isolating squalene from the liver oils of deep-sea sharks and plant seed oils. As knowledge of the biosynthetic enzymes and of regulatory mechanisms modulating squalene production increases, opportunities arise for the genetic engineering of squalene production in hosts. In this review, we present the various strategies used up to date to improve and/or engineer squalene production in microbes and analyze yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE (2016) Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 100:4309–4321

    Article  CAS  Google Scholar 

  • Ackman R, Addison R, Eaton C (1968) Unusual occurrence of squalene in a fish, the Eulachon Thaleichthys pacificus. Nature 220:1033–1034

    Article  CAS  Google Scholar 

  • Aguilera Y, Dorado ME, Prada FA, Martínez JJ, Quesada A, Ruiz-Gutiérrez V (2005) The protective role of squalene in alcohol damage in the chick embryo retina. Exp Eye Res 80:535–543

    Article  CAS  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson A-S, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  Google Scholar 

  • Berger A, Gremaud G, Baumgartner M, Rein D, Monnard I, Kratky E, Geiger W, Burri J, Dionisi F, Allan M (2003) Cholesterol-lowering properties of amaranth grain and oil in hamsters. Int J Vitam Nutr Res 73:39–47

    Article  CAS  Google Scholar 

  • Bhattacharjee P, Shukla V, Singhal R, Kulkarni P (2001) Studies on fermentative production of squalene. World J Microbiol Biotechnol 17:811–816

    Article  CAS  Google Scholar 

  • Budiyanto A, Ahmed NU, Wu A, Bito T, Nikaido O, Osawa T, Ueda M, Ichihashi M (2000) Protective effect of topically applied olive oil against photocarcinogenesis following UVB exposure of mice. Carcinogenesis 21:2085–2090

    Article  CAS  Google Scholar 

  • Chan P, Tomlinson B, Lee CB, Lee YS (1996) Effectiveness and safety of low-dose pravastatin and squalene, alone and in combination, in elderly patients with hypercholesterolemia. J Clin Pharmacol 36:422–427

    Article  CAS  Google Scholar 

  • Chang MH, Kim HJ, Jahng KY, Hong SC (2008) The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Appl Microbiol Biotechnol 78:963–972

    Article  CAS  Google Scholar 

  • Chen G, Fan K-W, Lu F-P, Li Q, Aki T, Chen F, Jiang Y (2010) Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. New Biotechnol 27:382–389

    Article  CAS  Google Scholar 

  • De Leonardis A, Macciola V, De Felice M (1998) Rapid determination of squalene in virgin olive oils using gas–liquid chromatography. Ital J Food Sci 10:75–80

    Google Scholar 

  • Dellas N, Thomas ST, Manning G, Noel JP (2013) Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2:e00672

    Article  Google Scholar 

  • Dessi MA, Deiana M, Day BW, Rosa A, Banni S, Corongiu FP (2002) Oxidative stability of polyunsaturated fatty acids: effect of squalene. Eur J Lipid Sci Technol 104:506–512

    Article  CAS  Google Scholar 

  • Drozdíková E, Garaiová M, Csáky Z, Obernauerová M, Hapala I (2015) Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity. Lett Appl Microbiol 61:77–84

    Article  Google Scholar 

  • Englund E, Pattanaik B, Ubhayasekera SJK, Stensjö K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One 9:e90270

    Article  Google Scholar 

  • Epstein W, Rilling H (1970) Studies on the mechanism of squalene biosynthesis the structure of presqualene pyrophosphate. J Biol Chem 245:4597–4605

    CAS  Google Scholar 

  • Fan KW, Aki T, Chen F, Jiang Y (2010) Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microbiol Biotechnol 26:1303–1309

    Article  CAS  Google Scholar 

  • Fang H (2014) Frontier and future development of information technology in medicine and education. Lect Notes Electr Eng 269:1699–1705

    Article  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:197

    Article  Google Scholar 

  • Garaiová M, Zambojová V, Šimová Z, Griač P, Hapala I (2014) Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 14:310–323

    Article  Google Scholar 

  • Gershbein LL, Singh EJ (1969) Hydrocarbons of dogfish and cod livers and herring oil. J Am Oil Chem Soc 46:554–557

    Article  CAS  Google Scholar 

  • Ghimire GP, Lee HC, Sohng JK (2009) Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol 75:7291–7293

    Article  CAS  Google Scholar 

  • Ghimire GP, Thuan NH, Koirala N, Sohng JK (2016) Advances in biochemistry and microbial production of squalene and its derivatives. J Microbiol Biotechnol 26:441–451

    Article  Google Scholar 

  • He H-P, Cai Y, Sun M, Corke H (2002) Extraction and purification of squalene from amaranthus grain. J Agric Food Chem 50:368–372

    Article  CAS  Google Scholar 

  • Hernández-Pérez M, Gallego RMR, Alayón PJP, Hernández AB (1997) Squalene content in livers from deep-sea sharks caught in Canary Island waters. Mar Freshw Res 48:573–576

    Article  Google Scholar 

  • Hoang TMH, Nguyen CH, Le TT, Hoang THQ, Ngo THT, Hoang TLA, Dang DH (2016) Squalene isolated from Schizochytrium mangrovei is a peroxisome proliferator-activated receptor-α agonist that regulates lipid metabolism in HepG2 cells. Biotechnol Lett 38:1065–1071

  • Huang Z-R, Lin Y-K, Fang J-Y (2009) Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 14:540–554

    Article  CAS  Google Scholar 

  • Hull CM, Loveridge EJ, Rolley NJ, Donnison IS, Kelly SL, Kelly DE (2014) Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock. Biotechnol Biofuels 7:1

    Article  Google Scholar 

  • Jennings SM, Tsay YH, Fisch TM, Robinson GW (1991) Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci 88:6038–6042

    Article  CAS  Google Scholar 

  • Jiang Y, Fan K-W, Tsz-Yeung Wong R, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem 52:1196–1200

    Article  CAS  Google Scholar 

  • Kajikawa M, Kinohira S, Ando A, Shimoyama M, Kato M, Fukuzawa H (2015) Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 10:e0120446

    Article  Google Scholar 

  • Kamimura N, Hidaka M, Masaki H, Uozumi T (1994) Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination. Appl Microbiol Biotechnol 42:353–357

    CAS  Google Scholar 

  • Kasai H, Katsuta A, Sekiguchi H, Matsuda S, Adachi K, Shindo K, Yoon J, Yokota A, Shizuri Y (2007) Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum ‘Verrucomicrobia’. Int J Syst Evol Microbiol 57:1630–1634

    Article  Google Scholar 

  • Katabami A, Li L, Iwasaki M, Furubayashi M, Saito K, Umeno D (2015) Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J Biosci Bioeng 119:165–171

    Article  CAS  Google Scholar 

  • Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci Biotechnol Biochem 75:2246–2248

    Article  CAS  Google Scholar 

  • Kelly GS (1999) Squalene and its potential clinical uses. Altern Med Rev J Clin Ther 4:29–36

    CAS  Google Scholar 

  • Kim S-J, Kim M-D, Choi J-H, Kim S-Y, Ryu Y-W, Seo J-H (2006) Amplification of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q (10) production in recombinant Escherichia coli. Appl Microbiol Biotechnol 72:982–985

    Article  CAS  Google Scholar 

  • Kohno Y, Egawa Y, Itoh S, S-i Nagaoka, Takahashi M, Mukai K (1995) Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochim Biophys Acta (BBA) Lipids Lipid Metab 1256:52–56

    Article  Google Scholar 

  • KopiCoVá Z, VaVreiNoVá S (2007) Occurrence of squalene and cholesterol in various species of Czech freshwater fish. Czech J Food Sci 25:195

    Google Scholar 

  • Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    Article  CAS  Google Scholar 

  • Lack M, Sant G (2009) Trends in global shark catch and recent developments in management. In: TRAFFIC International, vol 33

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci 97:13172–13177

    Article  CAS  Google Scholar 

  • Lee S, Poulter CD (2008) Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J Bacteriol 190:3808–3816

    Article  CAS  Google Scholar 

  • Lee J-K, Oh D-K, Kim S-Y (2007) Cloning and characterization of the dxs gene, encoding 1-deoxy-d-xylulose 5-phosphate synthase from Agrobacterium tumefaciens, and its overexpression in Agrobacterium tumefaciens. J Biotechnol 128:555–566

    Article  CAS  Google Scholar 

  • Lee PY, Yong VC, Rosli R, Gam LH, Chong PP (2014) Cloning, expression and purification of squalene synthase from Candida tropicalis in Pichia pastoris. Protein Expr Purif 94:15–21

    Article  CAS  Google Scholar 

  • Li Q, Chen G-Q, Fan K-W, Lu F-P, Aki T, Jiang Y (2009) Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves. J Agric Food Chem 57:4267–4272

    Article  CAS  Google Scholar 

  • Liu G, Ahrens E, Schreibman PH, Crouse JR (1976) Measurement of squalene in human tissues and plasma: validation and application. J Lipid Res 17:38–45

    CAS  Google Scholar 

  • Maguire L, O’sullivan S, Galvin K, O’connor T, O’brien N (2009) Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int J Food Sci Nutr 55:171–178

  • Mantzouridou F, Tsimidou MZ (2010) Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. FEMS Yeast Res 10:699–707

    Article  CAS  Google Scholar 

  • Mantzouridou F, Naziri E, Tsimidou MZ (2009) Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. J Agric Food Chem 57:6189–6198

    Article  CAS  Google Scholar 

  • Martirosyan DM, Miroshnichenko LA, Kulakova SN, Pogojeva AV, Zoloedov VI (2007) Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis 6:1

    Article  Google Scholar 

  • Maury J, Asadollahi MA, Møller K, Clark A, Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Biotechnology for the Future. Springer, Berlin, pp 19–51

    Google Scholar 

  • Miettinen TA, Vanhanen H (1994) Serum concentration and metabolism of cholesterol during rapeseed oil and squalene feeding. Am J Clin Nutr 59:356–363

    CAS  Google Scholar 

  • Nakashima T, Inoue T, Oka A, Nishino T, Osumi T, Hata S (1995) Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase. Proc Natl Acad Sci 92:2328–2332

    Article  CAS  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM (2012) Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour Technol 109:287–291

    Article  CAS  Google Scholar 

  • Nakazawa A, Kokubun Y, Matsuura H, Yonezawa N, Kose R, Yoshida M, Tanabe Y, Kusuda E, Van Thang D, Ueda M (2014) TLC screening of thraustochytrid strains for squalene production. J Appl Phycol 26:29–41

    Article  CAS  Google Scholar 

  • Naziri E, Mantzouridou F, Tsimidou MZ (2011) Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J Agric Food Chem 59:9980–9989

    Article  CAS  Google Scholar 

  • Obulesu T, Anandan R, Mathew S, Ganesan B, Krishna G, Lakra W, Asha K (2015) Antioxidant defence of dietary squalene supplementation on n-3 poly unsaturated fatty acids (PUFA)-mediated oxidative stress in young and aged rats. Fish Technol 52:48–52

  • Ohkuma T, Otagiri K, Tanaka S, Ikekawa T (1983) Intensification of host’s immunity by squalene in sarcoma 180 bearing ICR mice. J Pharmacobiodyn 6:148–151

    Article  CAS  Google Scholar 

  • Ohtake K, Saito N, Shibuya S, Kobayashi W, Amano R, Hirai T, Sasaki S, Nakano C, Hoshino T (2014) Biochemical characterization of the water-soluble squalene synthase from Methylococcus capsulatus and the functional analyses of its two DXXD (E) D motifs and the highly conserved aromatic amino acid residues. FEBS J 281:5479–5497

    Article  CAS  Google Scholar 

  • Orihara N, Kuzuyama T, Takahashi S, Furihata K, Seto H (1998) Studies on the biosynthesis of terpenoid compounds produced by actinomycetes. 3. Biosynthesis of the isoprenoid side chain of novobiocin via the non-mevalonate pathway in Streptomyces niveus. J Antibiot 51:676–678

    Article  CAS  Google Scholar 

  • Pan J-J, Solbiati JO, Ramamoorthy G, Hillerich BS, Seidel RD, Cronan JE, Almo SC, Poulter CD (2015) Biosynthesis of squalene from farnesyl diphosphate in bacteria: three steps catalyzed by three enzymes. ACS Cent Sci 1:77–82

    Article  CAS  Google Scholar 

  • Ravi Kumar S, Yamauchi I, Narayan B, Katsuki A, Hosokawa M, Miyashita K (2016) Squalene modulates fatty acid metabolism: enhanced EPA/DHA in obese/diabetic mice (KK-Ay) model. Eur J Lipid Sci Technol. doi:10.1002/ejlt.201600006

  • Ren LJ, Ji XJ, Huang H, Qu L, Feng Y, Tong QQ, Ouyang P-K (2010) Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biotechnol 87:1649–1656

    Article  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    Article  CAS  Google Scholar 

  • Ronco AL, De Stéfani E (2013) Squalene: a multi-task link in the crossroads of cancer and aging. Funct Foods Health Dis 3:462–476

    Google Scholar 

  • Salvador M, Aranda F, Gomez-Alonso S, Fregapane G (2003) Influence of extraction system, production year and area on Cornicabra virgin olive oil: a study of five crop seasons. Food Chem 80:359–366

    Article  CAS  Google Scholar 

  • Sánchez-Fidalgo S, Villegas I, Rosillo MÁ, Aparicio-Soto M, de la Lastra CA (2015) Dietary squalene supplementation improves DSS-induced acute colitis by downregulating p38 MAPK and NFkB signaling pathways. Mol Nutr Food Res 59:284–292

    Article  Google Scholar 

  • Sangari FJ, Pérez-Gil J, Carretero-Paulet L, García-Lobo JM, Rodríguez-Concepción M (2010) A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proc Natl Acad Sci 107:14081–14086

    Article  CAS  Google Scholar 

  • Shechter I, Klinger E, Rucker M, Engstrom R, Spirito J, Islam M, Boettcher B, Weinstein D (1992) Solubilization, purification, and characterization of a truncated form of rat hepatic squalene synthetase. J Biol Chem 267:8628–8635

    CAS  Google Scholar 

  • Singhal RS, Kulkarni P (1990) Effect of puffing on oil characteristics of Amaranth (Rajgeera) seeds. J Am Oil Chem Soc 67:952–954

    Article  CAS  Google Scholar 

  • Socaciu C, Faye M, Salin F, Pauly G, Gleizes M (1995) In vitro yeast (Saccharomyces cerevisiae) presqualene and squalene synthesis related to substrate and cofactor availability. C rendus de l’Acad Sci Ser III Sci de la vie 318:919–926

    CAS  Google Scholar 

  • Spanova M, Daum G (2011) Squalene-biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol 113:1299–1320

    Article  CAS  Google Scholar 

  • Storm HM, Oh SY, Kimler BF, Norton S (1993) Radioprotection of mice by dietary squalene. Lipids 28:555–559

    Article  CAS  Google Scholar 

  • Thompson JF, Danley DE, Mazzalupo S, Milos PM, Lira ME, Harwood HJ (1998) Truncation of human squalene synthase yields active, crystallizable protein. Arch Biochem Biophys 350:283–290

    Article  CAS  Google Scholar 

  • Tsujimoto M (1916) A highly unsaturated hydrocarbon in shark liver oil. Ind Eng Chem 8:889–896

    Article  CAS  Google Scholar 

  • Tsujiwaki G, Yamamoto H, Minami K (1995) Manufacture of squalene with Candida famata. Japan Kokai Tokkyo Koho JP 07, 289, 272 (C.A.-124: 230184)

  • Uragami S, Koga H (1986) Bacterial production of squalene. Japan Kokai Tokkyo Koho JP 61:212–290

    Google Scholar 

  • Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK (2009) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol 191:6145–6156

    Article  CAS  Google Scholar 

  • Wyre C, Overton TW (2014) Use of a stress-minimisation paradigm in high cell density fed-batch Escherichia coli fermentations to optimise recombinant protein production. J Ind Microbiol Biotechnol 41:1391–1404

    Article  CAS  Google Scholar 

  • Xiao H, Yao Z, Peng Q, Ni F, Sun Y, Zhang C, Zhong Z (2016) Extraction of squalene from camellia oil by silver ion complexation. Sep Purif Technol 169:196–201

  • Xu W, Yang S, Zhao J, Su T, Zhao L, Liu J (2014) Improving coenzyme Q (8) production in Escherichia coli employing multiple strategies. J Ind Microbiol Biotechnol 41:1297–1303

    Article  CAS  Google Scholar 

  • Xu W, Chai C, Shao L, Yao J, Wang Y (2016) Metabolic engineering of Rhodopseudomonas palustris for squalene production. J Ind Microbiol Biotechnol 43:719–725

    Article  CAS  Google Scholar 

  • Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H, Yokota A (2008) Rubritalea sabuli sp. nov., a carotenoid-and squalene-producing member of the family Verrucomicrobiaceae, isolated from marine sediment. Int J Syst Evol Microbiol 58:992–997

    Article  CAS  Google Scholar 

  • Yue C-J, Jiang Y (2009) Impact of methyl jasmonate on squalene biosynthesis in microalga Schizochytrium mangrovei. Process Biochem 44:923–927

    Article  CAS  Google Scholar 

  • Zahiri HS, Yoon SH, Keasling JD, Lee SH, Kim SW, Yoon SC, Shin YC (2006) Coenzyme Q (10) production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 8:406–416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Arno Müllbacher (Australian National University) for critical reading of the manuscript. This paper was supported by the Shaanxi Science and Technology Innovation Project 2016KTCQ03-07 (to Y. Wang). X. Ma was supported by a Research Support Grant (2015NQ03) from the Xi’an Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Ma, X. & Wang, Y. Production of squalene by microbes: an update. World J Microbiol Biotechnol 32, 195 (2016). https://doi.org/10.1007/s11274-016-2155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2155-8

Keywords

Navigation