Skip to main content
Log in

Improving coenzyme Q8 production in Escherichia coli employing multiple strategies

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Coenzyme Q (CoQ) is a medically valuable compound and a high yielding strain for CoQ will have several benefits for the industrial production of CoQ. To increase the CoQ8 content of E. coli, we blocked the pathway for the synthesis of menaquinone by deleting the menA gene. The blocking of menaquinone pathway increased the CoQ8 content by 81 % in E. coli (ΔmenA). To study the CoQ producing potential of E. coli, we employed previous known increasing strategies for systematic metabolic engineering. These include the supplementation with substrate precursors and the co-expression of rate-limiting genes. The co-expression of dxs-ubiA and the supplementation with substrate precursors such as pyruvate (PYR) and parahydroxybenzoic acid (pHBA) increased the content of CoQ8 in E. coli (ΔmenA) by 125 and 59 %, respectively. Moreover, a 180 % increase in the CoQ8 content in E. coli (ΔmenA) was realized by the combination of the co-expression of dxs-ubiA and the supplementation with PYR and pHBA. All in all, CoQ8 content in E. coli increased 4.06 times by blocking the menaquinone pathway, dxs-ubiA co-expression and the addition of sodium pyruvate and parahydroxybenzoic acid to the medium. Results suggested a synergistic effect among different metabolic engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Sanbe A, Tanonaka K, Niwano Y, Takeo S (1994) Improvement of cardiac function and myocardial energy metabolism of rats with chronic heart failure by long-term coenzyme Q10 treatment. J Pharmacol Exp Ther 269:51–56

    CAS  PubMed  Google Scholar 

  2. Matthews RT, Yang LC, Browne S, Baik M, Beal MF (1998) Coenzyme Q(10) administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci USA 95:8892–8897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sharma S, Kheradpezhou M, Shavali S, El Refaey H, Eken J, Hagen C, Ebadi M (2004) Neuroprotective actions of coenzyme Q(10) in Parkinson’s disease. Quinones Quinone Enzym 382:488–509

    Article  CAS  Google Scholar 

  4. Cluis CP, Ekins A, Narcross L, Jiang H, Gold ND, Burja AM, Martin VJ (2011) Identification of bottlenecks in Escherichia coli engineered for the production of CoQ(10). Metab Eng 13:733–744

    Article  CAS  PubMed  Google Scholar 

  5. Kim S-J, Kim M-D, Choi J-H, Kim S-Y, Ryu Y-W, Seo J-H (2006) Amplification of 1-deoxy-D-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q(10) production in recombinant Escherichia coli. Appl Microbiol Biotechnol 72:982–985

    Article  CAS  PubMed  Google Scholar 

  6. Seo M-J, Im E-M, Nam J-Y, Kim S-O (2007) Increase of CoQ(10) production level by the coexpression of decaprenyl diphosphate synthase and 1-Deoxy-D-xylulose 5-phosphate synthase isolated from Rhizobium radiobacter ATCC 4718 in recombinant Escherichia coli. J Microbiol Biotechnol 17:1045–1048

    CAS  PubMed  Google Scholar 

  7. Zahiri HS, Yoon SH, Keasling JD, Lee SH, Kim SW, Yoon SC, Shin YC (2006) Coenzyme Q(10) production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 8:406–416

    Article  CAS  PubMed  Google Scholar 

  8. Unden G (1988) Differential roles for menaquinone and demethylmenaquinone in anaerobic electron-transport of Escherichia-coli and their fnr-independent expression. Arch Microbiol 150:499–503

    Article  CAS  PubMed  Google Scholar 

  9. Wallace BJ, Young IG (1977) Role of quinones in electron-transport to oxygen and nitrate in Escherichia-coli—studies with a UbiA- menA- double quinone mutant. Biochim Biophys Acta 461:84–100

    Article  CAS  PubMed  Google Scholar 

  10. Suvarna K, Stevenson D, Meganathan R, Hudspeth MES (1998) Menaquinone (vitamin K-2) biosynthesis: localization and characterization of the menA gene from Escherichia coli. J Bacteriol 180:2782–2787

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Kong MK, Lee PC (2011) Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production. Biotechnol Bioeng 108:1997–2002

    Article  CAS  PubMed  Google Scholar 

  12. Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188:8259–8271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Spencer ME, Guest JR (1985) Transcription analysis of the sucAB, aceEF and lpd genes of Escherichia coli. Mol Gen Genet MGG 200:145–154

    Article  CAS  Google Scholar 

  14. Cluis CP, Burja AM, Martin VJJ (2007) Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol 25:514–521

    Article  CAS  PubMed  Google Scholar 

  15. Harker M, Bramley PM (1999) Expression of prokaryotic 1-deoxy-D-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett 448:115–119

    Article  CAS  PubMed  Google Scholar 

  16. Zhang D, Shrestha B, Li Z, Tan T (2007) Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system. Mol Biotechnol 35:1–14

    Article  PubMed  Google Scholar 

  17. Zhu XF, Yuasa M, Okada K, Suzuki K, Nakagawa T, Kawamukai M, Matsuda H (1995) Production of ubiquinone in Escherichia-coli by expression of various genes responsible for ubiquinone biosynthesis. J Ferment Bioeng 79:493–495

    Article  CAS  Google Scholar 

  18. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview

  19. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Inui M, Roh JH, Zahn K, Yukawa H (2000) Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Appl Environ Microbiol 66:54–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kato JI, Fujisaki S, Nakajima K, Nishimura Y, Sato M, Nakano A (1999) The Escherichia coli homologue of yeast Rer2, a key enzyme of dolichol synthesis, is essential for carrier lipid formation in bacterial cell wall synthesis. J Bacteriol 181:2733–2738

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Alper H, Jin Y-S, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  CAS  PubMed  Google Scholar 

  23. Choi J-H, Ryu Y-W, Park Y-C, Seo J-H (2009) Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q10 production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. J Biotechnol 144:64–69

    Article  CAS  PubMed  Google Scholar 

  24. Ha S-J, Kim S-Y, Seo J-H, Moon H-J, Lee K-M, Lee J-K (2007) Controlling the sucrose concentration increases coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Appl Microbiol Biotechnol 76:109–116

    Article  CAS  PubMed  Google Scholar 

  25. Gu S-B, Yao J-M, Yuan Q-P, Xue P-J, Zheng Z-M, Yu Z-L (2006) Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochem 41:1908–1912

    Article  CAS  Google Scholar 

  26. Yoshida H, Kotani Y, Ochiai K, Araki K (1998) Production of ubiquinone-10 using bacteria. J Gen Appl Microbiol 44:19–26

    Article  CAS  PubMed  Google Scholar 

  27. Park Y-C, Kim S-J, Choi J-H, Lee W-H, Park K-M, Kawamukai M, Ryu Y-W, Seo J-H (2005) Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl Microbiol Biotechnol 67:192–196

    Article  CAS  PubMed  Google Scholar 

  28. Zhong W, Fang J, Liu H, Wang X (2009) Enhanced production of CoQ10 by newly isolated Sphingomonas sp. ZUTEO3 with a coupled fermentation–extraction process. J Ind Microbiol Biotechnol 36:687–693

    Article  CAS  PubMed  Google Scholar 

  29. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a social development Grant of Shaanxi Province, China (2009k-14-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuiyun Yang or Jiankang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Yang, S., Zhao, J. et al. Improving coenzyme Q8 production in Escherichia coli employing multiple strategies. J Ind Microbiol Biotechnol 41, 1297–1303 (2014). https://doi.org/10.1007/s10295-014-1458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1458-8

Keywords

Navigation