Skip to main content

Advertisement

Log in

Progress in the microbial production of S-adenosyl-l-methionine

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

S-Adenosyl-l-methionine (SAM), which exists in all living organisms, serves as an activated group donor in a range of metabolic reactions, including trans-methylation, trans-sulfuration and trans-propylamine. Compared with its chemical synthesis and enzyme catalysis production, the microbial production of SAM is feasible for industrial applications. The current clinical demand for SAM is constantly increasing. Therefore, vast interest exists in engineering the SAM metabolism in cells for increasing product titers. Here, we provided an overview of updates on SAM microbial productivity improvements with an emphasis on various strategies that have been used to enhance SAM production based on increasing the precursor and co-factor availabilities in microbes. These strategies included the sections of SAM-producing microbes and their mutant screening, optimization of the fermentation process, and the metabolic engineering. The SAM-producing strains that were used extensively were Saccharomyces cerevisiae, Pichia pastoris, Candida utilis, Scheffersomyces stipitis, Kluyveromyces lactis, Kluyveromyces marxianus, Corynebacterium glutamicum, and Escherichia coli, in addition to others. The optimization of the fermentation process mainly focused on the enhancement of the methionine, ATP, and other co-factor levels through pulsed feeding as well as the optimization of nitrogen and carbon sources. Various metabolic engineering strategies using precise control of gene expression in engineered strains were also highlighted in the present review. In addition, some prospects on SAM microbial production were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cao XT, Yang MH, Xia Y, Dou J, Chen K, Wang H, Xi T, Zhou CL (2012) Strain improvement for enhanced production of S-adenosyl-l-methionine in Saccharomyces cerevisiae based on ethionine-resistance and SAM synthetase activity. Ann Microbiol 62:1395–1402

    Article  CAS  Google Scholar 

  • Chen C, Newman EB (1998) Comparison of the sensitivities of two Escherichia coli genes to in vivo variation of Lrp concentration. J Bacteriol 180(3):655–659

    CAS  Google Scholar 

  • Chen HX, Chu J, Zhang SL, Zhuang YP, Qian JC, Wang YH, Hu XQ (2007) Intracellular expression of Vitreoscilla hemoglobin improves S-adenosyl-methionine production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol 74:1205–1212

    Article  CAS  Google Scholar 

  • Chen YW, Lou SY, Fan LH, Zhang X, Tan TE (2015) Control of ATP concentration in Escherichia coli using synthetic small regulatory RNAs for enhanced S-adenosylmethionine production. FEMS Microbiol Lett 362(15):115

    Article  Google Scholar 

  • Chen HL, Yang Y, Wang ZL, Dou J, Wang H, Zhou CL (2016a) Elevated intracellular acetyl-CoA availability by ACS2 overexpression and MLS1 deletion combined with metK1 introduction enhanced SAM accumulation in Saccharomyces cerevisiae. Biochem Eng J 107:26–34

    Article  CAS  Google Scholar 

  • Chen HL, Wang Z, Wang ZL, Dou J, Zhou CL (2016b) Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae. World J Microbiol Biotechnol 32:56

    Article  CAS  Google Scholar 

  • Choi ES, Park BS, Lee SW, Oh MK (2009) Increased production of S-adenosyl-l-methionine in recombinant Saccharomyces cerevisiae sake K6. Korean J Chem Eng 26(1):156–159

    Article  CAS  Google Scholar 

  • Chu J, Qian JC, Zhuang YP, Zhang SL, Li YR (2013) Progress in the research of S-adenosyl-l-methionine production. Appl Microbiol Biotech 97(1):41–49

    Article  CAS  Google Scholar 

  • Curt MJ-C, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J (2015) Creatine biosynthesis and transport in health and disease. Biochimie 119:146–165

    Article  Google Scholar 

  • Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249

    Article  CAS  Google Scholar 

  • Gawel LJ, Turner JR, Parks LW (1962) Accumulations of S-adenosylmethionine by microorganism. J Biol Chem 83:497–499

    CAS  Google Scholar 

  • Grillo MA, Colombatto S (2008) S-adenosylmethionine and its products. Amino Acids 34(2):187–193

    Article  CAS  Google Scholar 

  • Halsted CH (2013) B-Vitamin dependent methionine metabolism and alcoholic liver disease. Clin Chem Lab Med 51(3):457–465

    Article  CAS  Google Scholar 

  • Han GQ, Hu XQ, Qin TY, Li Y, Wang XY (2016) Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-l-methionine. Enzym Microb Technol 83:14–21

    Article  CAS  Google Scholar 

  • He JY, Deng JJ, Zheng YH, Gu J (2006) A synergistic effect on the production of S-adenosyl-l-methionine in Pichia pastoris by knocking in of the S-adenosyl-l-methionine synthase and knocking out of cystathionine-β-synthase. J Biotechnol 126(4):519–527

    Article  CAS  Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156

    Article  CAS  Google Scholar 

  • Hosea Blewett HJ (2008) Exploring the mechanisms behind S-adenosylmethionine (SAMe) in the treatment of osteoarthritis. Crit Rev Food Sci Nutr 48(5):458–463

    Article  CAS  Google Scholar 

  • Hu XQ, Chu J, Zhang SL, Zhuang YP, Wang YH, Zhu S, Zhu ZG, Yuan ZY (2007) A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-l-methionine by methylotrophic Pichia pastoris. Enzym Microb Technol 40:669–674

    Article  CAS  Google Scholar 

  • Hu H, Qian JC, Chu J, Wang Y, Zhuang YP, Zhang SL (2009a) DNA shuffling of methionine adenosyltransferase leads to improved S-adenosyl-l-methionine production in Pichia pastoris. J Biotechnol 141:97–103

    Article  CAS  Google Scholar 

  • Hu H, Qian JC, Chu J, Wang YH, Zhuang YP, Zhang SL (2009b) Optimization of l-methionine feeding strategy for improving S-adenosyl-l-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris. Appl Microbiol Biotechnol 83:1105–1114

    Article  CAS  Google Scholar 

  • Huang L, Wei PL, Zang R, Xu ZN, Cen PL (2010) Highthroughput screening of high-yield colonies of Rhizopus oryzae for enhanced production of fumaric acid. Ann Microbiol 60:287–292

    Article  CAS  Google Scholar 

  • Huang Y, Gou X, Hu H, Xu Q, Lu Y, Cheng J (2012) Enhanced S-adenosyl-l-methionine production in Saccharomyces cerevisiae by spaceflight culture, overexpressing methionine adenosyltransferase and optimizing cultivation. J Appl Microbiol 112:683–694

    Article  CAS  Google Scholar 

  • Kant HR, Balamurali M, Meenakshisundaram S (2014) Enhancing precursors availability in Pichia pastoris for the overproduction of S-adenosyl-l-methionine employing molecular strategies with process tuning. J Biotechnol 188:112–121

    Article  Google Scholar 

  • Kim JY, Suh JW, Ji GE (2008) Evaluation of S-adenosyl-l-methionine production by Bifidobacterium bifidum BGN4. Food Sci Biotechnol 17(1):184–187

    CAS  Google Scholar 

  • Li W, Ye S, Luo K, Ge F, Du LG, Wu K, Ding CW (2007) Isolation and characterisation of Candida sp. mutants enriched in S-adenosylmethionine (SAM). Ann Microbiol 57(3):383–387

    Article  CAS  Google Scholar 

  • Lin JP, Tian J, You JF, Jin ZH, Xu ZN, Cen PL (2004) An effective strategy for the co-production of S-adenosyl-l-methionine and glutathione by fed-batch fermentation. Biochem Eng J 21:19–25

    Article  CAS  Google Scholar 

  • Linnebank M, Popp J, Smulders Y, Smith D, Semmler A, Farkas M, Kulic L, Cvetanovska G, Blom H, Stoffel-Wagner B, Kölsch H, Weller M, Jessen F (2010) S-Adenosylmethionine is decreased in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurodegener Dis 7:373–378

    Article  CAS  Google Scholar 

  • Lu SC, Mato JM (2008) S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol 23(Suppl 1):S73–S77

    Article  CAS  Google Scholar 

  • Markham GD, Pajares MA (2009) Structure-function relationships in methionine adenosyltransferases. Cell Mol Life Sci 66(4):636–648

    Article  CAS  Google Scholar 

  • Menant A, Barbey R, Thomas D (2006) Substrate-mediated remodeling of methionine transport by multiple ubiquitin-dependent mechanisms in yeast cells. EMBO J 25:4436–4447

    Article  CAS  Google Scholar 

  • Mincheva K, Kamburova V, Balutzov V (2002) Production of S-adenosyl-l-methionine by a mutant strain of Kluyveromyces lactis. Biotechnol Lett 24:985–988

    Article  CAS  Google Scholar 

  • Park J, Tai J, Roessner CA, Ian Scort A (1996) Enzymatic synthesis of S-adenosyl-l-methionine on the preparative scale. Bioorg Med Chem 4(12):2179–2185

    Article  CAS  Google Scholar 

  • Reguera RM, Balaña-Fouce R, Pérez-Pertejo Y, Fernández FJ, García-Estrada C, Cubría JC, Ordóñez C, Ordóñez D (2002) Cloning expression and characterization of methionine adenosyltransferase in Leishmania infantum promastigotes. J Biol Chem 277:3158–3167

    Article  CAS  Google Scholar 

  • Roje S, Chan SY, Kaplan F, Raymond RK, Horne DW, Appling DR, Hanson AD (2002) Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through methylenetetrahydrofolate reductase reaction in vivo. J Biol Chem 277(6):4056–4061

    Article  CAS  Google Scholar 

  • Sánchez-Pérez GF, Bautista JM, Pajares MA (2004) Methionine adenosyltransferase as a useful molecular systematics tool revealed by phylogenetic and structural analyses. J Mol Biol 335(3):693–706

    Article  Google Scholar 

  • Sekowska A, Kung HF, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2(2):145–177

    CAS  Google Scholar 

  • Senthilkumar UP, Padmanabhan R, Sivasankaran V, Mohan S (2006) Chemical synthesis of S-adenosyl-l-methionine with enrichment of (s, s)-isomer. United States Patent, 1–10

  • Shao N, Wang D, Wei G, Zhang Q, Ge X, Nie M (2010) Screening of Candida utilis and medium optimization for the co-production of S-adenosyl-l-methionine and glutathione. Korean J Chem Eng 27:1847–1853

    Article  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1984) Unusual intracellular accumulation of S-adenosyl-l-methionine by microorganisms. Agric Biol Chem 48(9):2293–2300

    CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1989) S-adenosyl-l-methionine production by Saccharomyces sake: optimization of the culture conditions for the production of cells with a high S-adenosyl-l-methionine content. Agric Biol Chem 53(12):3269–3274

    CAS  Google Scholar 

  • Shippy RA, Mendez D, Jones K, Cergnul I, Karpiak SE (2004) S-adenosylmethionine (SAM-e) for the treatment of depression in people living with HIV/AIDS. BMC Psychiatry 4:38

    Article  Google Scholar 

  • Shobayashi M, Mukai N, Iwashita K, Hiraga Y, Lefuji H (2006) A new method for isolating S-adenosylmethionine (SAM) accumulating yeast. Appl Microbiol Biotechnol 69:704–710

    Article  CAS  Google Scholar 

  • Sridhar M, Sree NK, Rao LV (2002) Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresour Technol 83(3):199–202

    Article  CAS  Google Scholar 

  • Thomas D, Surdin-Kejian Y (1991) The synthesis of the two S-adenosyl-l-methionine synthetase is differently regulated in Sacchromyces cerevisiae. Mol Gen Genet 226:224–232

    Article  CAS  Google Scholar 

  • Wang Y, Wang D, Wei G, Shao N (2012) Enhanced co-production of S-adenosylmethionine and glutathione by an ATP-oriented amino acid addition strategy. Bioresour Technol 107:19–24

    Article  CAS  Google Scholar 

  • Wang Y, Wang D, Wei G, Wang C (2013) Improved co-production of S-adenosylmethionine and glutathione using citrate as an auxiliary energy substrate. Bioresour Technol 131:28–32

    Article  CAS  Google Scholar 

  • Zhang JG, Wang XD, Zhang JN, Wei DZ (2008a) Oxygen vector used for S-adenosylmethionine production in recombinant Pichia pastoris with sorbitol as supplemental carbon source. J Biosci Bioeng 105(4):335–340

    Article  CAS  Google Scholar 

  • Zhang JG, Wang XD, Zheng Y, Fang GC, Wei DZ (2008b) Enhancing yield of S-adenosyl-methionine in Pichia pastoris by controlling NH4 + concentration. Bioprocess Biosyst Eng 31:63–67

    Article  Google Scholar 

  • Zhao WJ, Shi F, Hang BJ, Huang L, Cai J, Xu ZN (2016) The improvement of SAM accumulation by integrating the endogenous methionine adenosyltransferase gene SAM2 in genome of the industrial Saccharomyces cerevisiae strain. Appl Biochem Biotech 178(6):1263–1272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Open Funding Project of the State Key Laboratory of Bioreactor Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, Z., Cai, H. et al. Progress in the microbial production of S-adenosyl-l-methionine. World J Microbiol Biotechnol 32, 153 (2016). https://doi.org/10.1007/s11274-016-2102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2102-8

Keywords

Navigation