Skip to main content
Log in

Progress in the research of S-adenosyl-l-methionine production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This minireview mainly aims at the study of S-adenosyl-l-methionine (SAM) production by microbial fermentation. A brief introduction of the biological role and application of SAM was presented. In general, SAM production can be improved by breeding of the producing strain through the conventional mutation or genetic engineering approach in the molecular or cellular scale, by optimization of culture conditions in the cellular scale or bioreactor engineering scale, or by multiscale approach. The productivity of SAM fermentation has been improved greatly through the efforts of many researchers using the methods previously mentioned. The SAM-producing strains used extensively are Pichia pastoris and Saccharomyces cerevisiae. The effect of SAM on antibiotic production was also exemplified. The skill and scheme beneficial to the improvement of SAM production involves the enhancement of SAM synthetase (methionine adenosyltransferase) activity and selection of engineered constitutive promoters with appropriate strength; seeking for and eliminating the rate-limiting factors in SAM synthesis, namely, knocking off the genes that transform SAM and l-methionine (L-Met) to cysteine; release the feedback inhibition of SAM to methylenetetrahydrofolate reductase; blocking the transsulfuration pathway by interfering the responsible enzymes; enhancing ATP level through pulsed feeding of glycerol; and optimizing the L-Met feeding strategy. Precise control of gene expression and quantitative assessment of physiological parameters in engineered P. pastoris were highlighted. Finally, a discussion of the prospect of SAM production was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bottiglieri T, Hyland K, Reynold KH (1994) The clinical potential of ademethionine (S-adenosylmethionine) in neurologic disorders. Drugs 48:132–157

    Article  Google Scholar 

  • Cantoni GL (1951) Methylation of nicotinamide with a soluble enzyme system from rat liver. J Biol Chem 189:203–216

    CAS  Google Scholar 

  • Cantoni GL (1952) The nature of the active donor formed enzymatically from l-methionine and adenosine triphosphate. J Am Chem Soc 74:2942–2943

    Article  CAS  Google Scholar 

  • Cantoni GL (1953) S-adenosylmethionine; a new intermediate formed enzymatically from l-methionine and adenosinetriphosphate. J Biol Chem 203:403–416

    Google Scholar 

  • Cederbaum AI (2010) Hepatoprotective effects of S-adenosyl-l-methionine against alcohol- and cytochrome P450 2EI-induced injury. World J Gastroenterol 16:1366–1376

    Article  CAS  Google Scholar 

  • Chan SY, Appling DR (2003) Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae. J Biol Chem 278:43051–43059

    Article  CAS  Google Scholar 

  • Chen HX, Chu J, Zhang SL, Zhuang YP, Qian JC, Wang YH, Hu XQ (2007) Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol 74:1205–1212

    Google Scholar 

  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-adenosylmethionine and methylation. FASEB J 10:471–480

    Google Scholar 

  • Choi ES, Park BS, Lee SW, Oh MK (2009) Increased production of S-adenosyl-l-methionine in recombinant Saccharomyces cerevisiae sake K6. Korean J Chem Eng 26(1):156–159

    Google Scholar 

  • Cregg JM, Cereghino JL, Shi JY, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  CAS  Google Scholar 

  • Cui W, Huang L, Li W, Wang LP (2006) Cloning and expression of rat liver adenosylmethionine synthetase. Chem Res Chin U 22(2):236–248

    Article  CAS  Google Scholar 

  • Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249

    Article  CAS  Google Scholar 

  • Friedel HA, Goa KL, Benfield P (1989) S-adenosyl-l-methionine: a review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism. Drugs 38:389–416

    Article  CAS  Google Scholar 

  • Gawel LJ, Turner JR, Parks LW (1962) Accumulations of S-adenosylmethionine by microorganism. J Biol Chem 83:497–499

    CAS  Google Scholar 

  • Grillo MA, Colombatto S (2008) S-adenosylmethionine and its products. Amino Acids 34(2):187–193

    Article  CAS  Google Scholar 

  • Gross A, Geresh S, Whitesides GM (1983) Enzymatic synthesis of S-adenosyl-l-methionine from l-methionine and ATP. Appl Biochem Biotechnol 8:415–422

    Article  CAS  Google Scholar 

  • Guilidori P, Galli-Kienle M, Catto E, Strementinoli G (1984) Transmethylation, transsulfuration and aminopropylation reactions of S-adenosyl-l-methionine in vivo. J Biol Chem 259:4205–4211

    Google Scholar 

  • He JY, Deng JJ, Zheng YH, Gu J (2006) A synergistic effect on the production of S-adenosyl-l-methionine in Pichia pastoris by knocking in of the S-adenosyl-l-methionine synthase and knocking out of cystathionine-beta-synthase. J Biotechnol 126(4):519–527

    Article  CAS  Google Scholar 

  • Huang Y, Gou X, Hu H, Xu Q, Lu Y, Cheng J (2012) Enhanced S-adenosyl-l-methionine production in Saccharomyces cerevisiae by spaceflight culture, overexpressing methionine adenosyltransferase and optimizing cultivation. J Appl Microbiol 112:683–694

    Article  CAS  Google Scholar 

  • Hu H, Qian JC, Chu J, Wang YH, Zhuang YP, Zhang SL (2009a) Optimization of l-methionine feeding strategy for improving S-adenosyl-l-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris. Appl Microbiol Biotechnol 83:1105–1114

    Article  CAS  Google Scholar 

  • Hu H, Qian JC, Chu J, Wang Y, Zhuang YP, Zhang SL (2009b) DNA shuffling of methionine adenosyltransferase leads to improved S-adenosyl-l-methionine production in Pichia pastoris. J Biotechnol 141:97–103

    Google Scholar 

  • Hu XQ, Chu J, Zhang SL, Zhuang YP, Wang YH, Zhu S, Zhu ZG, Yuan ZY (2007) A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-l-methionine by methylotrophic Pichia pastoris. Enzym Microb Technol 40:669–674

    Google Scholar 

  • Hu XQ, Chu J, Zhang Z, Zhang SL, Zhuang YP, Wang YH, Guo MJ, Chen HX, Yuan ZY (2008) Effects of different glycerol feeding strategies on S-adenosyl-L-methionine biosynthesis by P GAP - driven Pichia pastoris overexpressing methionine adenosyltransferase. J Biotechnol 137:44–49

  • Jin YY, Cheng J, Yang SH, Meng L, Palaniyandi SA, Zhao XQ, Suh JW (2011) S-adenosyl-l-methionine activates actinorhodin biosynthesis by increasing autophosphorylation of the Ser/Thr protein kinase AfsK in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 75(5):910–913

    Google Scholar 

  • Kim JY, Suh JW, Ji GE (2008) Evaluation of S-adenosyl-l-methionine production by Bifidobacterium bifidum BGN4. Food Sci Biotechnol 17(1):184–187

    CAS  Google Scholar 

  • Li DY, Yu J, Tian L, Ji XS, Yuan JY (2002) Production of SAM by recombinant Pichia pastoris. Chin J Biotechnol 18:295–299

    Google Scholar 

  • Lieber CS (2002) S-adenosyl-l-methionine: its role in the treatment of liver disorders. Am J Clin Nutr 76:1183S–1187S

    CAS  Google Scholar 

  • Lin JP, Tian J, You JF, Jin JH, Xu ZN, Cen PL (2004) An effective strategy for the co-production of S-adenosyl-l-methionine and glutathione by fed-batch fermentation. Biochem Eng J 21(1):19–25

    Article  CAS  Google Scholar 

  • Liu H, Lin JP, Cen PL, Pan YJ (2004) Coproduction of S-adenosyl-l-methionine and glutathione from spent brewer’s yeast cells. Process Biochem 39:1993–1997

    Article  CAS  Google Scholar 

  • Lu SC (2000) S-adenosylmethionine. Intl J Biochem & Cell Biol 32:391–395

    Article  CAS  Google Scholar 

  • Luo YX, Yuan ZY, Luo GM, Zhao FK (2008) Expression of secreted His-tagged S-adenosylmethionine synthetase in the methylotrophic yeast Pichia pastoris and its characterization, one-step purification and immobilization. Biotechnol Prog 24(1):214–220

    Article  CAS  Google Scholar 

  • Maharjan S, Oh TJ, Lee HC, Sohng JK (2008) Heterologous expression of metKI-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin. Biotechnol Lett 30:1621–1626

    Article  CAS  Google Scholar 

  • Markham GD, Hafner EW, Tabor CW, Tabor H (1980) S-adenosyl-l-methionine synthetase from Escherichia coli. J Biol Chem 255(19):9082–9092

    Google Scholar 

  • Marx H, Mattanovich D, Sauer M (2008) Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microb Cell Fact 7:23

    Article  Google Scholar 

  • Mato JM, Alvarez L, Ortiz P, Pajares MA (1997) S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 73:265–280

    Google Scholar 

  • Mato JM, Pajares MA, Mingorance J, Avarez L (1995) Production of S-adenosylmethionine (SAM) by fermentation of transformed bacteria. Patent EP0647712 A1

  • Matos JR, Raushel FM, Wong CH (1987) S-adenosylmethionine: studies on chemical and enzymatic synthesis. Biotechnol Appl Biochem 9(1):39–52

    CAS  Google Scholar 

  • Mincheva K (1999) Selection of lactose-utilizing yeasts accumulating S-adenosyl-l-methionine. In: Kopchev P, Pavlov D, Pencheva J (eds) Reports of the University of Rousse, 37b(10). University of Rousse, Rousse, pp 49–54

  • Mincheva K, Kamburova V, Balutzov V (2002a) Production of S-adenosyl-l-methionine by a mutant strain of Kluyveromyces lactis. Biotechnol Lett 24:985–988

    Article  CAS  Google Scholar 

  • Mincheva K, Kamburova V, Balutzov V (2002b) Optimization of S-adenosyl-l-methionine production by Kluyveromyces lactis on whey in batch culture using a mathematic model. Biotechnol Lett 24:1773–1777

    Article  CAS  Google Scholar 

  • Mischoulon D, Fava M (2002) Role of S-adenosyl-l-methionine in the treatment of depression: a review of the evidence. Am J Clin Nutr 76:1158–1161

    Google Scholar 

  • Padova C (1987) S-adenosylmethionine in the treatment of osteoarthritis. Review of the clinical studies. Am J Med 83:60–65

    Article  Google Scholar 

  • Park J, Tai J, Roessner CA, Ian Scort A (1995) Overcoming product inhibition of S-adenosyl-l-methionine (SAM) synthetase: preparation of SAM on the 30 mmol/L scale. Bioorg Med Chem Lett 5(19):2203–2206

    Article  CAS  Google Scholar 

  • Park J, Tai J, Roessner CA, Ian Scort A (1996) Enzymatic synthesis of S-adenosyl-l-methionine on the preparative scale. Bioorg Med Chem 4(12):2179–2185

    Article  CAS  Google Scholar 

  • Prasad C, Mori M, Greeley GHJR, Edwards RM, Wilber JF, Pegnes J (1985) Biochemical transmethylation of lipids, neuropeptidergic stimulation of pituitary hormone secretion. Brain Res 334:41–46

    Article  CAS  Google Scholar 

  • Qin XL, Qian JC, Yao GF, Zhuang YP, Zhang SL, Chu J (2011a) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77(11):3600–3608

    Article  CAS  Google Scholar 

  • Qin XL, Qian JC, Xiao CY, Zhuang YP, Zhang SL, Chu J (2011b) Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris. Lett Appl Microbiol 52:634–641

    Article  CAS  Google Scholar 

  • Rhee JN, Yw L, Choi MU (1991) Laboratory scale preparation of S-adenosyl-l-methionine from yeast. Korea J Appl Microbiol Biotechnol 19:588–591

    CAS  Google Scholar 

  • Roje S (2006) S-adenosyl-l-methionine: beyond the universal methyl-group donor. Phytochem 67:1686–1698

    Article  CAS  Google Scholar 

  • Roje S, Chan SY, Kaplan F, Raymond RK, Horne DW, Appling DR, Hanson AD (2002) Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through methylenetetrahydrofolate reductase reaction in vivo. J Biol Chem 277(6):4056–4061

    Article  CAS  Google Scholar 

  • Schlenk F, Depalma RE (1957) The preparation of S-adenosylmethionine. J Biol Chem 229:1051–1057

    CAS  Google Scholar 

  • Schlenk F, Zydek C, Ehninger D, Dainko J (1965) The production of S-adenosyl-l-methionine and adenosyl-l-ethionine by yeast. Ezymologia 29:283–298

    CAS  Google Scholar 

  • Shelly CL (2000) S-adenosylmethionine. Intl J Biochem Cell Biol 32:391–395

  • Shimizu S, Shiozaki S, Ohshiro T, Yamada H (1984) Occurrence of S-adenosyl-l-homocysteine hydrolase in prokaryote cells: characterization of the enzyme from Alcaligenes faecalis and the role of the enzyme in the activated methyl cycle. Eur J Biochem 141:389–392

    Article  Google Scholar 

  • Shiomi N, Fukuda H, Morikawa H, Fukuda Y, Kimura A (1988) Cloning of a gene for S-adenosylmethionine synthesis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 29:302–304

    CAS  Google Scholar 

  • Shiomi N, Fukuda H, Fukuda Y, Murata K (1990) Production of S-adenosylmethionine by Saccharomyces cerevisiae cells carrying a gene for ethionine resistance. Biotechnol Bioeng 35:1120–1124

    Article  CAS  Google Scholar 

  • Shiomi N, Fukuda H, Murata K, Kimura A (1995) Improvement of S-adenosyl-l-methionine production by integration of the ethionine-resistance gene into chromosome of the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:730–733

    Article  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1984) Unusual intracellular accumulation of S-adenosyl-l-methionine by microorganisms. Agric Biol Chem 48(9):2293–2300

    Article  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1986) Production of S-adenosyl-l-methionine by Saccharomyces sake. J Biotechnol 4(6):345–354

    Article  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1989) S-adenosyl-l-methionine production by Saccharomyces sake: optimization of the culture conditions for the production of cells with a high S-adenosyl-l-methionine content. Agric Biol Chem 53(12):3269–3274

    Article  CAS  Google Scholar 

  • Shobayashi M, Mukai N, Iwashita K, Hiraga Y, Lefuji H (2006) A new method for isolating S-adenosylmethionine (SAM) accumulating-yeast. Appl Microbiol Biotechnol 69:704–710

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. Adv Enzymol 56:251–282

    CAS  Google Scholar 

  • Thomas D, Rothstein R, Rosenburg N, Surdin-Kerjan Y (1988) SAM2 encodes the second methionine S-adenosyltransferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol 8:5132–5139

    CAS  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1991) The synthesis of the two S-adenosyl-l-methionine is differently regulated in Saccharomycescerevisiae. Mol Gen Genet 226:224–232

    Article  CAS  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  Google Scholar 

  • Williams AI, Girard C, Jui D, Sabina A, Katz DL (2005) S-adenosylmethionine (SAMe) as treatment for depression: a systematic review. Clin Invest Med 28:132–139

    CAS  Google Scholar 

  • Yoon GS, Ko KH, Kang HW, Suh JW, Kim YS, Ryu YW (2006) Characterization of S-adenosylmethionine synthetase from Streptomyces avermitilis NRRL8165 and its effect on antibiotic production. Enz Microb Biotechnol 39:466–473

    Article  CAS  Google Scholar 

  • Yu ZL, Wu XJ, Li DY, Yang S, Zhou Z, Cai J, Yuan ZY (2002) Enhancement of the production of SAM by overexpressing of SAM synthetase in Pichia pastoris. Acta Biochem Biophy Sin 35(2):127–132

    Google Scholar 

  • Zhang JG, Cai R, Li XH, Yuan ZY (2004) Optimization of SAM production by recombinant Pichia pastoris. J Ind Microbiol 34:1–5

    Google Scholar 

  • Zhang JG, Wang XD, Su EZ, Fang GC, Ren YH, Wei DZ (2008a) A new fermentation strategy for S-adenosylmethionine production in recombinant Pichia pastoris. Biochem Eng J 41:74–78

    Article  Google Scholar 

  • Zhang JG, Wang XD, Zhang JN, Wei DZ (2008b) Oxygen vectors used for S-adenosylmethionine production in recombinant Pichia pastoris with sorbitol as supplemental carbon source. J Biosci Bioeng 105(4):335–340

    Article  CAS  Google Scholar 

  • Zhang JG, Wang XD, Zheng Y, Fang GC, Wei DZ (2008c) Enhancing yield of S-adenosylmethionine in Pichia pastoris by controlling NH4 + concentration. Bioproc Biosyst Eng 31(2):63–67

    Article  Google Scholar 

  • Zhao XQ, Jin YY, Kwon HJ, Yang YY, Suh JW (2006) S-adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J Microbiol Biotechnol 16:927–932

    CAS  Google Scholar 

  • Zhao XQ, Gust B, Helde L (2010) S-adenosylmethionine (SAM) and antibiotic biosynthesis: effects of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Arch Microbiol 192:289–297

    Article  CAS  Google Scholar 

  • Zhou J, Chu J, Wang YH, Zhang SL, Zhuang YP, Yuan ZY (2008) Purification and properties of Saccharomyces cerevisiae S-adenosylmethionine synthetase expressed in recombinant Pichia pastoris. World J of Microbiol Biotechnol 24(6):789–796

    Google Scholar 

  • Zhu S, Chu J, Hu XQ, Zhuang YP, Zhang SL, Yuan ZY (2006) Medium optimization for S-adenosyl-l-methionine production in recombinant Pichia pastoris using statistically-base experimental design. High Technol Commun 16:181–196

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Major State Basic Research Development Program of China (973 Program, 2012CB721006); the National Natural Science Foundation of China (20976065); the National Scientific and Technological Major Special Project (Significant Creation of New Drugs, no. 2011ZX09203-001-03); and the Chinese Doctoral Program of Higher Education of Specialized Research Fund (20110074110015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, J., Qian, J., Zhuang, Y. et al. Progress in the research of S-adenosyl-l-methionine production. Appl Microbiol Biotechnol 97, 41–49 (2013). https://doi.org/10.1007/s00253-012-4536-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4536-8

Keywords

Navigation