Skip to main content

Advertisement

Log in

Strain improvement for enhanced production of S-adenosyl-L-methionine in Saccharomyces cerevisiae based on ethionine-resistance and SAM synthetase activity

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

S-adenosyl-L-methionine (SAM) is an essential metabolite in all living cells, and which plays an important role in cellular functions such as methylation, sulfuration, and polyamine synthesis. The current study was carried out to obtain an industrial strain with overproduction of SAM. The wild-type strain, Saccharomyces cerevisiae CGMCC 1226, was subjected to successive mutagenic with ultraviolet irradiation (UV) coupled with ethionine-resistant screening procedure to achieve a rapid improvement of S-adenosyl-L-methionine production in Saccharomyces cerevisiae. A high SAM yield strain, designated as Saccharomyces cerevisiae CGMCC 2842, was successfully selected and exhibited higher SAM synthetase activity which was increased by 2.7-fold in comparison with the wild-type strain. Meanwhile, the production of SAM by Saccharomyces cerevisiae CGMCC 2842 in a 15-L fermentor reached 6.1 g/L after 36 h fed-batch fermentation and was increased by 4.3-fold. In addition, the ethionine-resistant genes of the mutant and wild-type strains were cloned, and analyses of nucleotide sequences suggested that the replacements of amino acid residues could be responsible for the ethionine-resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barra JL, Mautino MR, Rosa AL (1996) A dominant negative of effect of eth-1r, a mutant allele of the Neurospora crassa S-adenosylmethionine synthetase-encoding gene conferring resistance to the methionine toxic analogue ehtionine. Genetics 144:1455–1462

    PubMed  CAS  Google Scholar 

  • Bradley JD, Flusser D, Katz BP, Schumacher HR Jr, Brandt KD, Chambers MA, Zonay LJ (1994) A randomized, double blind, placebo controlled trial of intravenous loading with S-adenosylmethionine (SAM) followed by oral SAM therapy in patients with knee osteoarthritis. J Rheumatol 21:905–911

    PubMed  CAS  Google Scholar 

  • Budovskaya YV, Stephan JS, Deminoff SJ, Herman PK (2005) An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. Proc Natl Acad Sci USA 102:13933–13938

    Article  PubMed  CAS  Google Scholar 

  • Cantoni GL (1952) The nature of the active methyl donor formed enzymatically from L-methionine and adenosinetriphosphate. J Am Chem Soc 74:2942–2943

    Article  CAS  Google Scholar 

  • Cheng HR, Jiang N (2006) Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 28:55–59

    Article  PubMed  CAS  Google Scholar 

  • Dynesen J, Smits HP, Olsson L, Nielsen J (1998) Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl Microbiol Biotechnol 50:579–582

    Google Scholar 

  • Fontecave M, Atta M, Mulliez E (2004) S-adenosyl-L-methionine: nothing goes to waste. Trends Biochem Sci 29:243–249

    Article  PubMed  CAS  Google Scholar 

  • He J, Deng J, Zheng Y, Gu J (2006) A synergistic effect on the production of S-adenosyl-l-methionine in Pichia pastoris by knocking in of S-adenosyl-l-methionine synthase and knocking out of cystathionine-synthase. J Biotechnol 126:519–527

    Article  PubMed  CAS  Google Scholar 

  • Hosea Blewett HJ (2008) Exploring the mechanisms behind. S-adenosylmethionine (SAMe) in the treatment of osteoarthritis. Crit Rev Food Sci Nutr 48:458–463

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Qian JC, Chu J, Wang Y, Zhuang Y, Zhang S (2009) DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris. J Biotechnol 141:97–103

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Wei PL, Zang R, Xu ZN, Cen PL (2010) High-throughput screening of high-yield colonies of Rhizopus oryzae for enhanced production of fumaric acid. Ann Microbiol 60:287–292

    Article  CAS  Google Scholar 

  • Jeong-Nam P, Lee KH, Ko KH, Seo KH, Chin JE, Lee HB, Bai S (2004) Expression of ethionine resistance conferring gene in an industrial strain of Saccharomyces cerevisiae. Korean J Microbiol Biotech 32:356–361

    Google Scholar 

  • Lee SW, Park BS, Choi ES, Oh MK (2010) Overexpression of ethionine resistance gene for maximized production of S-adenosylmethionine in Saccharomyces cerevisiae sake kyokai No. 6. Korean J Chem Eng 27:587–589

    Article  CAS  Google Scholar 

  • Li W, Ye S, Luo KJ, Ge FL, Du LJ, Wu K, Ding CW (2007) Isolation and characterisation of Candida sp. mutants enriched in S-adenosylmethionine (SAM). Ann Microbiol 57:383–387

    Article  CAS  Google Scholar 

  • Lieber CS, Packer L (2002) S-Adenosy-l-methionine: molecular, biological, and clinical aspects-an introduction. Am J Clin Nutr 76(Suppl):1148S–1150S

    PubMed  CAS  Google Scholar 

  • Linnebank M, Popp J, Smulders Y, Smith D, Semmler A, Farkas M, Kulic L, Cvetanovska G, Blom H, Stoffel-Wagner B, Kölsch H, Weller M, Jessen F (2010) S-Adenosylmethionine Is Decreased in the Cerebrospinal Fluid of Patients with Alzheimer’s Disease. Neurodegenerative Dis 7:373–378

    Article  CAS  Google Scholar 

  • Lu SC, Mato JM (2008) S-Adenosy-l-methionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol 23(Suppl):73S–77S

    Article  Google Scholar 

  • Malkowski MG, Quartley E, Friedman AE, Babulski J, Kon Y, Wolfley J, Said M, Luft JR, Phizicky EM, DeTitta GT, Grayhack EJ (2007) Blocking S-adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiavelength anomalous dispersion phasing. Proc Natl Acad Sci USA 104:6678–6683

    Article  PubMed  CAS  Google Scholar 

  • Maw GA (1966) Incorporation and distribution of ethionine-sulfur in the protein of ethionine-sensitive and ethionine-resistant yeasts. Arch Biochem Biophys 115:291–301

    Article  PubMed  CAS  Google Scholar 

  • Newman PE (2000) Alzheimer’s disease revisited. Med Hypotheses 54:774–776

    Article  PubMed  CAS  Google Scholar 

  • Nguyen M, Gregan A (2002) S-adenosyl-l-methionine and depression. Aust Fam Physician 31:339–343

    PubMed  Google Scholar 

  • Santiago TC, Mamoun CB (2003) Genome expression analysis in yeast reveals novel transcriptional regulation by Inositol and Choline and New Regulatory Functions for Opi1p, Ino2p, and Ino4p. J Biol Chem 278:38723–38730

    Article  PubMed  CAS  Google Scholar 

  • Scarpa S, Fuso A, D'Anselmi F, Cavallaro RA (2003) Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett 541:145–148

    Article  PubMed  CAS  Google Scholar 

  • Schlenk F, Zydek CR (1967) The radiopurity of S-adenosylmethionine and S-adenosylethionine preparations. J Labelled Compounds 3:137–143

    Article  CAS  Google Scholar 

  • Schlenk F, Zydek CR, Ehninger DJ, Dainko JL (1965) The production of S-adenosyl-L-methionine and S-adenosyl-L-ethionine by yeast. Enzymologia 29:283–298

    PubMed  CAS  Google Scholar 

  • Shiomi N, Fukuda H, Fukuda Y, Murata K, Kimura A (1991) Nucleotide sequence and characterization of a gene conferring resisitance to ethionine in yeast Saccharomyces cerevisiae. J Ferment Bioeng 4:211–215

    Article  Google Scholar 

  • Shiomi N, Fukuda H, Murata K, Kimura A (1995) Improvement of S-adenosylmethionine production by integration of the ethionine-resistance gene into chromosomes of the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:730–733

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1984) Unusual intracellular accumulation of S-adenosyl-L-methionine by microorganisms. Agric Biol Chem 48:2293–2300

    Article  CAS  Google Scholar 

  • Shippy RA, Mendez D, Jones K, Cergnul I, Karpiak SE (2004) S-adenosy-l-methioine (SAM-e) for the treatment of depression in people living with HIV/AIDS. BMC Psychiatry 4:38

    Article  PubMed  Google Scholar 

  • Sreenivas A, Carman GM (2003) Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase A. J Biol Chem 278:20673–20680

    Article  PubMed  CAS  Google Scholar 

  • Sridhar M, KiranSree N, Venkateswa RL (2002) Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresour Technol 83:199–202

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Surdin-kejian Y (1991) The synthesis of the two S-adenosyl-L-methionine synthetase is differently regulated in Sacchromyces cerevisiae. Mol Gen Genet 226:224–232

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Chu J, Wang YH, Zhang SL, Zhuang YP, Yuan ZY (2008) Purification and properties of Saccharomyces cerevisiae S-adenosylmethionine synthetase expressed in recombinant Pichia pastoris. World J Microbiol Biotechnol 24:789–796

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored by Natural Science Foundation of Jiangsu Province (SBK200921231), the Industrialization of Scientific Research Promotion Projects of Colleges and Universities in Jiangsu Province (JH10-12), the Qing Lan Project (2008) from Jiangsu Province and the “111 Project” from the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (No. 111-2-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Xi or Changlin Zhou.

Additional information

Xitao Cao and Minghua Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Yang, M., Xia, Y. et al. Strain improvement for enhanced production of S-adenosyl-L-methionine in Saccharomyces cerevisiae based on ethionine-resistance and SAM synthetase activity. Ann Microbiol 62, 1395–1402 (2012). https://doi.org/10.1007/s13213-011-0389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0389-0

Keywords

Navigation