Skip to main content
Log in

Physiological and Biochemical Characteristics of Cinnamomum camphora in Response to Cu- and Cd-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Copper (Cu) and cadmium (Cd) are ordinary heavy metals. Unreasonable development and utilization of these heavy metals will cause severe pollution to the soils and consequently bring damage to human health. Therefore, recovering soils polluted by heavy metals is crucial. An indoor pot experiment was carried out involving seven treatments, namely, low-concentration Cu stress (Cu1), high-concentration Cu stress (Cu2), low-concentration Cd stress (Cd1), high-concentration Cd stress (Cd2), low-concentration Cu–Cd combined stress (Cu1Cd1), and high-concentration Cu–Cd combined stress (Cu2Cd2), and an uncontaminated soil as a control. Results demonstrated that the net photosynthetic rate and chlorophyll content are approximately 8.36–72.51% and 7.22–36.50%, respectively, lower under the Cu, Cd, and Cu–Cd combined stresses than under the control. The net photosynthetic rates are higher under Cu2 and Cd2 than under Cu1 and Cd1; by contrast, the net photosynthetic rate of leaves is lower under Cu2Cd2 than under Cu1Cd1. The net photosynthesis rate of Cinnamomum camphora is significantly positively correlated with superoxide dismutase activity but is significantly negatively correlated with the total chlorophyll, malondialdehyde, soluble sugar, and proline contents. Young Cinnamomum camphora grows well under Cu, Cd, and Cu–Cd combined stresses and is applicable in ecologically restoring heavy metal–contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • Andresen, E., & Kupper, H. (2013). Cadmium toxicity in plants. Metal Ions in Life Sciences, 11, 395–413.

    Article  CAS  Google Scholar 

  • Batool, R., Hameed, M., Ashraf, M., Fatima, S., Nawaz, T., & Ahmad, M. S. A. (2014). Structural and functional response to metal toxicity in aquatic Cyperus alopecuroides Rottb. Limnologica – Ecol and Manag Inland Waters, 48, 46–56.

    Article  CAS  Google Scholar 

  • Bharwana, S. A., Ali, S., Farooq, M. A., Ali, B., Iqbal, N., Abbas, F., & Ahmad, M. S. A. (2014). Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environmental Science and Pollution Research, 21, 717–731.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Capuana, M. (2011). Heavy metals and woody plants - biotechnologies for phytoremediation. iForest, 4, 7–15.

    Article  Google Scholar 

  • Chen, G. C., Liu, Y. Q., Wang, R. M., Zhang, J. F., & Owens, G. (2013). Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environmental Science and Pollution Research, 20, 5665–5672.

    Article  CAS  Google Scholar 

  • Chen, J., Yan, Z., & Li, X. (2014). Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicology and Environmental Safety, 104, 349–356.

    Article  CAS  Google Scholar 

  • Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath, N., & Ok, Y. S. (2014). Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences, 33, 374–391.

    Article  CAS  Google Scholar 

  • Di Baccio, D., Castagna, A., Tognetti, R., Ranieri, A., & Sebastiani, L. (2014). Early responses to cadmium of two poplar clones that differ in stress tolerance. Journal of Plant Physiology, 171, 1693–1705.

    Article  Google Scholar 

  • Etesami, H. (2018). Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicology and Environmental Safety, 147, 175–191.

    Article  CAS  Google Scholar 

  • Fan, S. K., Fang, X. Z., Guan, M. Y., Ye, Y. Q., Lin, X. Y., Du, S. T., & Jin, C. W. (2014). Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Frontiers in Plant Science, 5, 1–8.

    Article  CAS  Google Scholar 

  • Guarino, C., Conte, B., Spada, V., Arena, S., Sciarrillo, R., & Scaloni, A. (2014). Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives. Environmental Science & Technology, 48, 11487–11496.

    Article  CAS  Google Scholar 

  • Guerrier, G. (1997). Proline accumulation in leaves of NaCl-sensitive and NaCl-tolerant tomatoes. Biologia Plantarum, 40, 623–628.

    Article  CAS  Google Scholar 

  • Han, R. M., Lefèvre, I., Albacete, A., Pérez-Alfocea, F., Barba-Espín, G., Díaz-Vivancos, P., Quinet, M., Ruan, C. J., Hernandez, J. A., & Cantero-Navarro, E. (2013). Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiologia Plantarum, 147, 352–368.

    Article  CAS  Google Scholar 

  • Hassan, Z., & Aarts, M. G. M. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72, 53–63.

    Article  CAS  Google Scholar 

  • Ho, J. R., Ma, H. W., Wang, Y. C., Ko, C. H., Chang, F. C., Feng, F. L., & Wang, Y. N. (2014). Extraction of heavy metals from contaminated soil by Cinnamomum camphora. Ecotoxicology, 23(10), 1987–1995.

    Article  CAS  Google Scholar 

  • Hu, Y. F., Zhou, G. Y., Na, X. F., Yang, L. J., Nan, W. B., Liu, X., Zhang, Y. Q., Li, J. L., & Bi, Y. R. (2013). Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. Journal of Plant Physiology, 170, 965–975.

    Article  CAS  Google Scholar 

  • Iannone, M. F., Groppa, M. D., & Benavides, M. P. (2015). Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environmental and Experimental Botany, 109, 201–211.

    Article  CAS  Google Scholar 

  • Leitenmaier, B., & Kupper, H. (2013). Compartmentation and complexation of metals in hyperaccumulator plants. Frontiers in Plant Science, 4, 1–13.

    Article  Google Scholar 

  • Li, H. S. (2000). Principles and techniques of plant physiological biochemical experiment (pp. 164–169). Beijing: Higher Education Press (in Chinese).

    Google Scholar 

  • Llugany, M., Tolrà, R., Martín, S. R., Poschenrieder, C., & Barceló, J. (2013). Cadmium-induced changes in glutathione and phenolics of Thlaspi and Noccaea species differing in Cd accumulation. Journal of Plant Nutrition and Soil Science, 176, 851–858.

    Article  CAS  Google Scholar 

  • Lu, K., Yang, X., Gielen, G., & Bolan, N. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292.

    Article  CAS  Google Scholar 

  • Luo, Z. B., Wu, C. H., Zhang, C., Li, H., Lipka, U., & Polle, A. (2014). The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environmental and Experimental Botany, 108, 47–62.

    Article  CAS  Google Scholar 

  • Ma, Y. L., He, J. L., Ma, C. F., Luo, J., Li, H., Liu, T. X., Polle, A., Peng, C. F., & Luo, Z. B. (2014). Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens. Plant, Cell & Environment, 37, 627–642.

    Article  CAS  Google Scholar 

  • Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: a review. Journal of Hazardous Materials, 285, 419–435.

    Article  CAS  Google Scholar 

  • Marmiroli, M., Pietrini, F., Maestri, E., Zacchini, M., Marmiroli, N., & Massacci, A. (2011). Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology, 31, 1319–1334.

    Article  CAS  Google Scholar 

  • Marmiroli, M., Imperiale, D., Maestri, E., & Marmiroli, N. (2013). The response of Populus spp. to cadmium stress: chemical, morphological and proteomics study. Chemosphere, 93, 1333–1344.

    Article  CAS  Google Scholar 

  • Medas, D., De Giudici, G., Pusceddu, C., Casu, M. A., Birarda, G., Vaccari, L., Gianoncelli, A., & Meneghini, C. (2017). Impact of Zn excess on biomineralization processes in Juncus acutus grown in mine polluted sites. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2017.08.031.

  • Ovecka, M., & Takac, T. (2014). Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnology Advances, 32, 73–86.

    Article  CAS  Google Scholar 

  • Pizarro, I., Gómez-Gómez, M., León, J., Román, D., & Palacios, M. A. (2016). Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of Chile. Science of the Total Environment, 565, 557–563.

    Article  CAS  Google Scholar 

  • Poonam, S., Kaur, H., & Geetika, S. (2013). Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Mill sp. seedlings under copper stress. American Journal of Plant Sciences, 4, 817–823.

    Article  Google Scholar 

  • Rajkumar, M., Prasad, M. N. V., Freitas, H., & Ae, N. (2009). Biotechnological applications of serpentine bacteria for phytoremediation of heavy metals. Critical Reviews in Biotechnology, 29, 120–130.

    Article  CAS  Google Scholar 

  • Shi, W. G., Li, H., Liu, T. X., Polle, A., Peng, C. H., & Luo, Z. B. (2015). Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant, Cell & Environment, 38, 207–223.

    Article  CAS  Google Scholar 

  • Stolarikova-Vaculikova, M., Romeo, S., Minnocci, A., Luxova, M., Vaculik, M., Lux, A., & Sebastiani, L. (2015). Anatomical, biochemical and morphological responses of poplar Populus deltoides clone Lux to Zn excess. Environmental and Experimental Botany, 109, 235–243.

    Article  CAS  Google Scholar 

  • Suthar, V., Memon, K. S., & Mahmood-UI-Hassan, M. (2014). EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environmental Monitoring and Assessment, 186, 3957–3968.

    Article  CAS  Google Scholar 

  • Tao, S., Sun, L., Ma, C., Li, L., Li, G., & Hao, L. (2013). Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium. Plant and Soil, 372, 309–318.

    Article  CAS  Google Scholar 

  • Tuzen, M., Sesli, E., & Soylak, M. (2007). Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control, 18(7), 806–810.

    Article  CAS  Google Scholar 

  • Upadhyay, R. K. (2014). Metal stress in plants: Its detoxification in natural environment. Brazilian Journal of Botany, 37, 377–382.

    Article  Google Scholar 

  • Wang, B., Wang, C., Li, J., Sun, H., & Xu, Z. (2014). Remediation of alkaline soil with heavy metal contamination using tourmaline as a novel amendment. Journal of Environmental Chemical Engineering, 2, 1281–1286.

    Article  CAS  Google Scholar 

  • Wang, R., Wang, J., Zhao, L., Yang, S., & Song, Y. (2015). Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals, 28, 123–132.

    Article  Google Scholar 

  • Wu, G., Kang, H. B., Zhang, X. Y., Shao, H. B., Chu, L. Y., & Ruan, C. J. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174, 1–8.

    Article  CAS  Google Scholar 

  • Xie, Y., Li, X., Liu, X., Amombo, E., Chen, L., & Fu, J. (2017). Application of aspergillus aculeatus, to rice roots reduces cd concentration in grain. Plant and Soil, 1, 1–14.

    Google Scholar 

  • Zhan, J., & Sun, Q. Y. (2011). Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. Journal of Environmental Sciences (China), 23, 476–487.

    Article  CAS  Google Scholar 

  • Zhu, X. F., Wang, Z. W., Dong, F., Lei, G. J., Shi, Y. Z., Li, G. X., & Zheng, S. J. (2013). Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. Journal of Hazardous Materials, 263, 398–403.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Key Project of Jiangxi Provincial Department of Education (GJJ20180921), National Natural Science Foundation of China (31460149), Key Project of Jiangxi Provincial Department of Science and Technology (20171ACH80016), Special Graduate Student Innovation Fund of Jiangxi Province in 2017 (YJSCX20170008), and the fund of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (K318009902-1414).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihai Zhou or Weibo Shen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Cheng, K., Zheng, J. et al. Physiological and Biochemical Characteristics of Cinnamomum camphora in Response to Cu- and Cd-Contaminated Soil. Water Air Soil Pollut 230, 15 (2019). https://doi.org/10.1007/s11270-018-4048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4048-y

Keywords

Navigation