Skip to main content
Log in

Cadmium adsorption by willow root: the role of cell walls and their subfractions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plant cell walls may play an important role in the uptake and accumulation of heavy metals. This study was undertaken to obtain a better understanding of the role of the root cell walls (RCW) and their subfractions on adsorption of cadmium (Cd) in a promising woody phytoremediation species, Salix jiangsuensis J172. In order to examine how Cd binding was affected by pectin and hemicellulose, RCW were isolated and sequentially fractioned by removing pectin (RCW1), partial removal of hemicellulose (RCW2), and complete removal of hemicellulose (RCW3). The RCW and fractions were characterized by Fourier transform infrared spectroscopy, which suggested decomposition of hemicellulose and a decline in nitrogen content following cell wall isolation and fractionation. The adsorption affinity of Cd increased gradually following the sequential extraction of root cells, suggesting that hemicellulose negatively impacted Cd adsorption, while pectin and cellulose enhanced Cd adsorption. Cd adsorption dynamics and isotherms could be best described by the pseudo-second-order (R > 0.99) and Freundlich (R > 0.97) models, respectively. Thermodynamic properties (∆G, ∆H, and ∆S), determined using the van’t Hoff equation, indicated that while Cd adsorption was endothermic, and spontaneous for RCW2 and RCW3, adsorption was not spontaneous for the root, RCW, and RCW1. The results provide evidence for the importance of the root cell walls in the adsorption of Cd by willow roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117

    Article  CAS  Google Scholar 

  • Azouaou N, Sadaouia Z, Djaafri A, Mokaddema H (2010) Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater 184:126–134

    Article  CAS  Google Scholar 

  • Berndes G, Fredrikson F, Borjesson P (2004) Cadmium accumulation and Salix based phytoextraction on arable land in Sweden. Agr Ecosyst Environ 103:207–223

    Article  CAS  Google Scholar 

  • Boopathy R, Karthikeyan S, Mandal AB, Sckaran G (2012) Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm and thermodynamic studies. Environ Sci Pollut Res. doi:10.1007/s11356-012-0911-3

  • Chen L, Zhang SZ, Huang HL, Wen B, Christie P (2009) Partitioning of phenanthrene by root cell walls and cell wall fractions of wheat (Ttiticum aestivum L.). Environ Sci Technol 43:9136–9141

    Article  CAS  Google Scholar 

  • Chen GC, Liu ZK, Zhang JF, Owens G (2012) Phytoaccumulation of copper in willow seedlings under different hydrological regimes. Ecol Eng 44:285–289

    Article  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  CAS  Google Scholar 

  • Dogan M, Aklan M, Turkyilmaz A (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109:141–148

    Article  CAS  Google Scholar 

  • Durand TC, Baillif P, Albéric P, Carpin S, Label P, Hausman J-F, Morabito D (2011) Cadmium and Zinc are differentially distributed in Populus tremula x P. alba exposed to metal excess. Plant Biosyst 145:305–405

    Article  Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediat 1:115–123

    Article  CAS  Google Scholar 

  • Han F, Shan XS, Zhang S, Wen B, Owens G (2006) Enhanced cadmium accumulation in maize roots—the impact of organic acids. Plant Soil 289:355–368

    Article  CAS  Google Scholar 

  • Hu ZH, Chen H, Ji F, Yuan SJ (2010) Removal of congo red from aqueous solution by cattail roots. J Hazard Mater 173:292–297

    Article  CAS  Google Scholar 

  • Huguet S, Bert V, Laboudigue A, Barthès V, Isaure M-P, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Experim Bot 82:54–65

    Article  CAS  Google Scholar 

  • Kaczala F, Marques M, Hogland W (2009) Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust. Bioresour Technol 100:235–243

    Article  CAS  Google Scholar 

  • Liu D, Kottke I, Adam D (2007) Localization of Cd in the root cells of Allium cepa by energy dispersive X-ray analysis. Biol Plant 51:363–366

    Article  CAS  Google Scholar 

  • Liu YQ, Chen GC, Zhang JF, Shi X, Wang RM (2011) Uptake of cadmium from hydroponic solutions by willow (Salix sp.) seedlings. Afr J Biotech 10:16209–16218

    CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi geosingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120(4):537–545

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37

    Article  CAS  Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  • Mirck J, Isebrands JG, Verwijst T, Ledin S (2005) Development of short-rotation willow coppice systems for environmental purposes in Sweden. Biomass Bioenerg 28(2):219–228

    Article  Google Scholar 

  • Nishzono H, Ichikawa H, Suziki S, Ishii F (1987) The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 101:15–20

    Article  Google Scholar 

  • Redjala T, Sterckeman T, Morel JL (2009) Cadmium uptake by roots: contribution of apoplast and of high- and low-affinity membrane transport systems. Environ Exp Bot 67:235–242

    Article  CAS  Google Scholar 

  • Seregin IV, Vooijs R, Kozhevnikova AD, Ivanov VB, Schat H (2007) Effects of cadmium and lead on phytochelatin accumulation in maize shoots and different root parts. Dokl Biol Sci 415:304–306

    Article  CAS  Google Scholar 

  • Solís-Domínquez FA, Gonzáles-Chávez MC, Carrillo-González R, Rodríguez-Vázquez R (2007) Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J Hazard Mater 141:630–636

    Article  Google Scholar 

  • Son K-H, Kim D-Y, Koo N, Kim K-R, Kim J-G, Owens G (2012) Detoxification through phytochelatin synthesis in Oenothera odorata exposed to Cd solutions. Environ Exp Bot 75:9–15

    Article  CAS  Google Scholar 

  • Tlustos P, Szakova J, Vyslouzilova M, Pavlikova D, Weger J, Javorska H (2007) Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willow Salix spp. grown in contaminated soils. Cent Eur J Biol 2:254–275

    Article  CAS  Google Scholar 

  • Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser M-T (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Wang JL, Yuan JG, Yang ZY, Huang BF, Zhou YH, Xin JL, Gong YL, Yu H (2009) Variation in Cd accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). J Agri Food Chem 57:8942–8949

    Article  CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Biol Plant 49:237–245

    Article  Google Scholar 

  • Yang WD, Chen YT, Qu MH (2009) Subcellular distribution and chemical forms of cadmium in Salix matsudana. Acta Bot Boreal 29:1394–1399 (in Chinese)

    CAS  Google Scholar 

  • Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892

    Article  CAS  Google Scholar 

  • Zhong H, Lauchli A (1993) Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J Exp Bot 44:773–778

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the Special Fund for Forestry Scientific Research in the Public Interest, People’s Republic of China (201104055), and the Research Institute of Subtropical Forestry, Chinese Academy of Forestry (RISF 6803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangcai Chen or Jianfeng Zhang.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Liu, Y., Wang, R. et al. Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environ Sci Pollut Res 20, 5665–5672 (2013). https://doi.org/10.1007/s11356-013-1506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1506-3

Keywords

Navigation