Skip to main content

Advertisement

Log in

Ecophysiological traits of Antarctic vascular plants: their importance in the responses to climate change

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Only two vascular plants have been able to colonize some of the ice and snow-free lands of the Antarctic Peninsula: the hair grass Deschampsia antarctica (Poaceae) and the pearlwort Colobanthus quitensis (Caryophyllaceae). This low species diversity may be due to the permanent low temperature even during summer time. Beside low temperature, Antarctic plants must be able to cope with other severe physiological stressors such as desiccation, low soil water availability, and high irradiance. However, these factors are found in other cold areas of the globe. Thus, what is so special about these two species that has enabled them to be the only successful flowering plants in the Antarctica? Although this question has been addressed in other articles, we still lack of an integrative ecophysiological framework that helps to disentangle what it is unique of these species in terms of adaptations to the Antarctic environments, and how these adaptations will help or preclude their responses to future climate change. Several adaptations seem to help to withstand the Antarctic climate: xerophytic anatomical characteristics, sufficient freezing tolerance, ability to maintain positive net photosynthesis at near 0 °C, adequate management of excess photosynthetic active radiation, resistance to photoinhibitory conditions, tolerance to water stress, and ability to form associations with endophytes that help in their mineral nutrition. Besides the very effective stress tolerance strategies, several ecophysiological traits show considerable response flexibility. The evidence reviewed here indicates that small increases in air temperature may be beneficial in terms of photosynthetic performance. However, increased frequency of leaf temperatures over 20 °C could be harmful affecting photosynthesis and reducing the ability of these plants to tolerate freezing temperatures and photoprotection at low temperatures, attributes by which they are able to colonize these very harsh environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alberdi M, Bravo LA, Gutiérrez AH, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  CAS  PubMed  Google Scholar 

  • Anderson JT, Panetta AM, Mitchell-Olds T (2012) Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate change. Plant Physiol 160:1728–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargagli R (2005) Antarctic ecosystems: environmental contamination, climate change, and human impact. Springer-Verlag, Berlin

    Google Scholar 

  • Bascuñan-Godoy L, Uribe E, Zuñiga-Fest A, Corcuera LJ, Bravo LA (2006) Low temperature regulates sucrose-phosphate synthase activity in Colobanthus quitensis (Kunth) Bartl. by decreasing its sensitivity to Pi and increased activation by glucose-6-phosphate. Polar Biol 29:1011–1017

    Article  Google Scholar 

  • Bascuñan-Godoy L, García-Plazaola J, Bravo LA, Corcuera LJ (2010) Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biol 33:885–896

    Article  Google Scholar 

  • Bascuñan-Godoy L, Sanhueza C, Cuba-Díaz M, Zúñiga GE, Corcuera LA, Bravo LA (2012) Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae). BMC Plant Biol 12:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459

    Article  PubMed  Google Scholar 

  • Beyer L, Bockheim JG, Campbell IB, Claridge GGC (1999) Genesis, properties and sensitivity of Antarctic Gelisols. Antarct Sci 11:387–398

    Article  Google Scholar 

  • Beyer L, Bölter M, Seppelt RD (2000) Nutrient and thermal regime, microbial biomass and vegetation of Antarctic soils in the Windmill Islands Region of east Antarctica (Wilkes Land). Arct Antarct Alp Res 32:30–39

    Article  Google Scholar 

  • Bledsoe C, Klein P, Bliss LC (1990) A survey of mycorrhizal plants on Truelove Lowland, Devon Island, N.W.T, Canada. Can J Bot 68:1848–1856

    Google Scholar 

  • Bölter M (2011) Soil development and soil biology on King George Island, maritime Antarctic. Pol Polar Res 32:105–116

    Google Scholar 

  • Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1089–1096

    Article  CAS  Google Scholar 

  • Bravo LA, Ulloa N, Zúñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65

    Article  CAS  Google Scholar 

  • Bravo LA, Saavedra-Mella FA, Vera F, Guerra A, Cavieres LA, Ivanov AL, Huner NPA, Corcuera LJ (2007) Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. J Exp Bot 58:3581–3590

    Article  CAS  PubMed  Google Scholar 

  • Bravo LA, Bascuñán-Godoy L, Pérez-Torres E, Corcuera LJ (2009) Cold hardiness in Antarctic vascular plants. In: Gusta L, Wisnewski M, Tanino K (eds) Plant Cold hardiness: from the laboratory to the field. CAB International, UK, pp 198–213

    Chapter  Google Scholar 

  • Bystrzejewska-Piotrowska G, Urban PL (2009) Tufted hairgrass (Deschampsia caespitosa) exhibits a lower photosynthetic plasticity than Antarctic hairgrass (Deschampsia antarctica). J Integr Plant Biol 51:593–603

    Article  CAS  PubMed  Google Scholar 

  • Cabello M, Gaspar L, Pollero R (1994) Glomus antarcticum sp. nov; a vesicular-arbuscular mycorrhizal fungus from Antarctica. Mycotaxon 51:123–128

    Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Casanova-Katny A, Cavieres LA (2012) Antarctic moss carpets facilitate growth of Deschampsia antarctica but not its survival. Polar Biol 35:1869–1878

    Article  Google Scholar 

  • Casanova-Katny MA, Zúñiga GE, Corcuera LJ, Bravo LA (2010) Alberdi M (2010) Deschampsia antarctica Desv. primary photochemistry performs differently in plants grown in the field and laboratory. Polar Biol 33:477–483

    Article  Google Scholar 

  • Chatterton NJ, Harrison PA, Bennet JH, Asay KH (1989) Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cool temperatures. J Plant Physiol 134:169–179

    Article  CAS  Google Scholar 

  • Chew O, Lelean S, John UP, Spangenberg GC (2012) Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv. Plant Cell Environ 35:829–837

    Article  CAS  PubMed  Google Scholar 

  • Chown SL, Huiskes AHL, Gremmen NJM, Lee JE et al (2012) Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc Natl Acad Sci USA 109:4938–4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Convey P (2000) How does cold constrain life cycles of terrestrial plants and animals? Cryo Lett 21:73–82

    Google Scholar 

  • Convey P (2001) Terrestrial ecosystem response to climate changes in the Antarctic. In: Walther G-R, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change—adapted behaviour and shifting species ranges. Kluwer, New York, pp 17–42

    Chapter  Google Scholar 

  • Convey P (2006) Antarctic terrestrial ecosystems: responses to environmental changes. Polarforsch 75:101–111

    Google Scholar 

  • Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641

    Article  Google Scholar 

  • Convey P (2013) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, 2nd edn. Elsevier, San Diego, pp 179–188

    Chapter  Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  CAS  PubMed  Google Scholar 

  • Day TA, Ruhland CT, Grobe CW, Xiong F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119:24–35

    Article  Google Scholar 

  • DeMars BJ, Boerner REJ (1995) Mycorrhizal status of Deschampsia antarctica in the Palmer Station area, Antarctica. Mycologia 87:451–453

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068

    Article  CAS  PubMed  Google Scholar 

  • Edwards JA (1972) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. V. Distribution, ecology and vegetative performance on Signy Island. Br Antarct Surv B 26:41–50

    Google Scholar 

  • Edwards JA, Smith RIL (1988) Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the Maritime Antarctic. Br Antarct Surv B 81:43–63

    Google Scholar 

  • Fowbert JA, Smith RIL (1994) Rapid population increases in native vascular plants in the Argentine Island, Antarctic Peninsula. Arct Antarct Alp Res 26:290–296

    Article  Google Scholar 

  • Fox AJ, Cooper APR (1998) Climate-change indicators from archival aerial photography of the Antarctic Peninsula. Ann Glaciol 27:636–642

    Google Scholar 

  • Gannutz TP (1970) Photosynthesis and respiration of plants in the Antarctic Peninsula area. Antarct J USA 5:49–51

    Google Scholar 

  • Gianoli E, Inostroza P, Zúñiga-Feest A, Reyes-Días M, Cavieres LA, Bravo LA, Corcuera LJ (2004) Ecotypic Differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of Central Chile and the Maritime Antarctic. Arct Antarct Alp Res 36:484–489

    Article  Google Scholar 

  • Giełwanowska I, Szczuka E (2005) New ultrastructural features of organelles in leaf cells of Deschampsia antarctica Desv. Polar Biol 28:951–955

    Article  Google Scholar 

  • Giełwanowska I, Szczuka E, Bednara J, Górecki R (2005) Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann Bot 96:1109–1119

    Article  PubMed  PubMed Central  Google Scholar 

  • Green TGA, Schroeter B, Sancho LG (2007) Plant life in Antarctica. In: Pugnaire F, Valladares F (eds) Functional plant ecology, 2nd edn. CRC-Press, Boca Raton, pp 389–433

    Google Scholar 

  • Greene DM, Holtom A (1971) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. III. Distribution, habitats and performance in the Antarctic botanical zone. Br Antarct Surv B 26:1–29

    Google Scholar 

  • Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins D, Bardgett RD, Jones DL (2011) Vascular plant success in a warming antarctic may be due to efficient nitrogen acquisition. Nat Clim Chang 1:50–53

    Article  CAS  Google Scholar 

  • Hobbie JE (2007) Arctic ecology. In: Pugnarie FI, Valladares F (eds) Handbook of functional plant ecology, 2nd edn. CRC Press, Boca Raton, pp 473–493

    Google Scholar 

  • Holtom A, Greene SW (1967) Growth and reproduction of Antarctic flowering plants. Philos Trans R Soc 252:323–337

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already. Tree 15:56–61

    PubMed  Google Scholar 

  • Hughes KA, Convey P (2010) The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob Environ Chang 20:96–112

    Article  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Fourth IPCC Assessment Report Working Group 1. Cambridge University Press, Cambridge, UK

  • Kappen L, Schroeter B (2002) Plants and lichens in the Antarctic. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Springer-Verlag, Berlin, pp 327–374

    Chapter  Google Scholar 

  • Kennedy A (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315

    Article  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Article  Google Scholar 

  • Kim J, Chung H (2004) Distribution pattern of Deschampsia antarctica, a flowering plant newly colonized around King Sejong Station in Antarctica. Ocean Polar Res 26:23–32

    Google Scholar 

  • Kim JH, Ahn IY, Lee KS, Chung H, Choi HG (2007) Vegetation of Barton Peninsula in the neighborhood of King Sejong Station (King George Island, maritime Antarctic). Polar Biol 30:903–916

    Article  Google Scholar 

  • Klanderud K (2008) Species-specific responses of an alpine plant community under simulated environmental change. J Veg Sci 19:363–372

    Article  Google Scholar 

  • Körner C (2015) Paradigm shifts in plant growth control. Curr Opin Plant Biol 2015(25):107–114

    Article  CAS  Google Scholar 

  • Körner C, Larcher W (1988) Plant life in cold climates. In: Long SP, Woodward FY (eds) Plants and temperature. Symposium of the Society for Experimental Biology No. 42. Cambridge University Press, Cambridge, pp 25–27

  • Lambers H, Chapin FS, Pons TJ (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Leishman MR, Wild C (2001) Vegetation abundance and diversity in relation to soil nutrients and soil water content in Vestfold Hills, East Antarctica. Antarct Sci 13:126–134

    Article  Google Scholar 

  • Lindsay DC (1971) Vegetation of the South Shetland Islands. Br Antarct Surv Bull 25:59–83

    Google Scholar 

  • Luccini EA, Grossi H, Piacentini RD, Canziani PO (2005) Characterization of meteorological parameters, solar radiation and effect of clouds at two antarctic sites, and comparison with satellite estimates. Meteorologica 30:27–40

    Google Scholar 

  • Mantovani A, Vieira RC (2000) Leaf micromorphology of Antarctic pearlwort Colobanthus quitensis (Kuntz) Bartl. Polar Biol 28:531–538

    Article  Google Scholar 

  • Meltofte H (2013) Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri

    Google Scholar 

  • Montiel P, Smith A, Keiler D (1999) Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Res 18:229–235

    Article  Google Scholar 

  • Newsham KK, Upson R, Read DJ (2009) Mycorrhizas and dark septate endophytes in polar regions. Fungal Ecol 2:10–20

    Article  Google Scholar 

  • Olave-Concha N, Bravo LA, Ruiz-Lara S, Corcuera LJ (2005) Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia antarctica Desv. Pol Biol 28:506–513

    Article  Google Scholar 

  • Pagter M, Arora R (2013) Winter survival and deacclimation of perennials under warming climate: physiological perspectives. Physiol Plant 147:75–87

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Ahn IY, Lee EJ (2012) Influence of soil properties on the distribution of Deschampsia antarctica on King George Island, maritime Antarctica. Polar Biol 35:1703–1711

    Article  Google Scholar 

  • Park JS, Ahn IY, Lee EJ (2013) Spatial distribution patterns of the Antarctic Hair grass Deschampsia antarctica in relation to environmental variables on Barton Peninsula, King George Island. Arct Antarct Alp Res 45:563–574

    Article  Google Scholar 

  • Parnikoza I, Miryuta NY, Maidanyuk DN, Loparev SA, Korsun SG, Budzanivska IG, Shevchenko TP, Polischuk VP, Kunakh VA, Kozeretska IA (2007) Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in the maritime Antarctica. Polar Sci 1:121–128

    Article  Google Scholar 

  • Parnikoza I, Kozeretska I, Kunakh V (2011) Vascular plants of the maritime Antarctic: origin and adaptation. Am J Plant Sci 2:381–395

    Article  Google Scholar 

  • Pérez-Torres E, Dinamarca J, Bravo LA, Corcuera LJ (2004a) Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Pol Biol 27:183–189

    Article  Google Scholar 

  • Pérez-Torres E, García A, Dinamarca J, Alberdi M, Gutiérrez A, Gidekel M, Ivanov AG, Hüner NPA, Corcuera LJ, Bravo LA (2004b) The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Funct Plant Biol 31:731–741

    Article  Google Scholar 

  • Pérez-Torres E, Bascuñán L, Sierra A, Bravo LA, Corcuera LJ (2006) Robustness of activity of Calvin cycle enzymes after high light and low temperature conditions in Antarctic vascular plants. Pol Biol 29:909–916

    Article  Google Scholar 

  • Pérez-Torres E, Bravo LA, Corcuera LJ, Johnson GN (2007) Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from Antarctic vascular plants. Physiol Plant 130:185–194

    Article  CAS  Google Scholar 

  • Piotrowicz-Cieślak AI, Gielwanowska I, Bochenek A, Loro P, Górecki RJ (2005) Carbohydrates in Colobanthus quitensis and Deschampsia antarctica. Acta Soc Bot Pol 74:209–217

    Article  Google Scholar 

  • Pyykkö M (1966) The leaf anatomy of East Patagonian xeromorphic plants. Ann Bot Fenn 3:453–622

    Google Scholar 

  • Rakusa-Suszczewski S (2002) King George Island-South Shetland Islands, maritime Antarctic. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes., Ecological studies, vol 154. Springer, Berlin

    Google Scholar 

  • Reyes-Bahamonde C (2013) Consecuencias del aumento de la temperatura y la sequía en la resistencia al congelamiento de Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth.) Bartl. (Caryophyllaceae). Biology Thesis. Universidad de Concepción

  • Roberts P, Newsham KK, Bardgett RD, Farrar JF, Jones DL (2009) Vegetation cover regulates the quantity, quality and temporal dynamics of dissolved organic carbon and nitrogen in Antarctic soils. Pol Biol 32:999–1008

    Article  Google Scholar 

  • Romero M, Casanova A, Iturra G, Reyes A, Montenegro G, Alberdi M (1999) Leaf anatomy of Deschampsia antarctica (Poaceae) from the Maritime Antarctic and its plastic response to changes in growth conditions. Rev Chil Hist Nat 72:411–425

    Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002) Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil 242:93–106

    Article  CAS  Google Scholar 

  • Sierra-Almeida A, Cavieres LA (2010) Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia 163:267–276

    Article  PubMed  Google Scholar 

  • Sierra-Almeida A, Casanova-Katny MA, Bravo LA, Corcuera LJ, Cavieres LA (2007) Photosynthetic responses to temperature and light of Antarctic and Andean populations of Colobanthus quitensis (Caryophyllaceae). Rev Chil Hist Nat 80:335–343

    Article  Google Scholar 

  • Smith RIL (1994) Vascular plants as bioindicators of regional warming in the Antarctic. Oecologia 99:322–328

    Article  Google Scholar 

  • Smith RIL (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 234–239

    Google Scholar 

  • Smith RIL, Richardson M (2011) Fuegian plants in Antarctica: natural or anthropogenically assisted immigrants? Biol Invasions 13:1–5

    Article  Google Scholar 

  • Smykla J, Wołek J, Barcikowski A (2007) Zonation of vegetation related to penguin rookeries on King George Island, maritime Antarctic. Arct Antarct Alp Res 39:143–151

    Article  Google Scholar 

  • Tatur A, Myrcha A, Niegodzisz J (1997) Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biol 17:405–417

    Article  Google Scholar 

  • Torres-Mellado GA, Jaña R, Casanova-Katny MA (2011) Antarctic hairgrass expansion in the South Shetland archipelago and Antarctic Peninsula revisited. Polar Biol 34:1679–1688

    Article  Google Scholar 

  • Turner J, Barrand N, Bracegirdle T, Convey P, Hodgson D, Jarvis M, Jenkins A, Marshall G, Meredith M, Roscoe H, Shanklin J, French J, Goosse H, Guglielmi M, Gutt J, Jacobs S, Kennicutt M II, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A (2013) Antarctic climate change and the environment: an update. Polar Rec. doi:10.1017/S0032247413000296

    Google Scholar 

  • Upson R, Newsham KK, Read DJ (2008) Root–fungal associations of Colobanthus quitensis and Deschampsia antarctica in the maritime and sub-Antarctic. Arct Antarct Alp Res 40:592–599

    Article  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11

    Article  PubMed  Google Scholar 

  • Vaughan D, Marshall G, Connelley W, Parkinson C, Mulvaney R, Hodgson D, King J, Pudsey C, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Chang 60:243–274

    Article  Google Scholar 

  • Vera ML (2011) Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Res 30:1–10

    Article  Google Scholar 

  • Vera ML, Fernández-Teruel T, Antonio Quesada (2013) Distribution and reproductive capacity of Deschampsia Antarctica and Colobanthus quitensis on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct Sci 25:292–302

    Article  Google Scholar 

  • Vieira R, Mantovani A (1995) Anatomía foliar de Deschampsia antarctica Desv. (Gramineae). Rev Brasil Bot Sao Paulo 18:207–220

    Google Scholar 

  • Von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • Xiong FS, Ruhland TC, Day TA (1999) Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol Plant 106:276–286

    Article  CAS  Google Scholar 

  • Xiong FS, Mueller EC, Day TA (2000) Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperatures regimes. Am J Bot 87:700–710

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga GE, Alberdi M, Fernández J, Montiel P, Corcuera LJ (1994) Lipid content in leaves of Deschampsia antarctica Desv. from the maritime Antarctic. Phytochemistry 37:669–672

    Article  Google Scholar 

  • Zúñiga GE, Alberdi M, Corcuera LJ (1996) Non structural carbohydrates in Deschampsia antarctica Desv. from South Shetland Islands, maritime Antarctic. Environ Exp Bot 36:396–399

    Article  Google Scholar 

  • Zúñiga-Feest A, Inostroza P, Vega M, Bravo LA, Corcuera LJ (2003) Enzyme activity and sugars in the grass Deschampsia antarctica. Antarct Sci 15:483–491

    Article  Google Scholar 

  • Zúñiga-Feest A, Bascuñán L, Reyes-Diaz M, Bravo LA, Corcuera LJ (2009) Is survival after ice encasement related with organ sugar distribution in the Antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae)? Polar Biol 32:583–591

    Article  Google Scholar 

Download references

Acknowledgments

Research funded by PIA-ART 11-02. Additional support from F ICM P05-002 and CONICYT PFB-023 funding the Institute of Ecology and Biodiversity (IEB) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lohengrin A. Cavieres.

Additional information

Communicated by Martin Nunez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavieres, L.A., Sáez, P., Sanhueza, C. et al. Ecophysiological traits of Antarctic vascular plants: their importance in the responses to climate change. Plant Ecol 217, 343–358 (2016). https://doi.org/10.1007/s11258-016-0585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0585-x

Keywords

Navigation