Skip to main content
Log in

Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) is distributed from Mexico to the Maritime Antarctic. It grows forming inconspicuous populations in humid and cold sites along high elevations in the Andes Mountains. Mediterranean Andes is characterized by a wider oscillation of diurnal and seasonal temperature, while the Maritime Antarctic is characterized by permanent low temperatures. Both places may experience high irradiance during sunny days (reaching up to 2,000 μmol photons m−2 s−1); however, the frequency of sunny days in the Maritime Antarctica is significantly lower (less than 20% of the whole growing season). We study whether acclimation to each environment relies on different photoprotective mechanisms. The Andean ecotype that has a longer growing season and a higher light integral reduces light absorption by the development of smaller chloroplasts with lower stacking granum area and down-regulation of Lhcb2. It also enhances the dissipation of the excess of absorbed energy by higher level of de-epoxidation of xanthophylls pool. On the other hand, the Antarctic ecotype which has developed under a shorter growing season, with lower total irradiance and continuous low temperatures, maximizes photochemical process even at low temperatures and it has a lower light-harvesting/core complex ratio and higher level of photoprotection supplied by an unusually high β-carotene and xanthophylls cycle pool. It resembles a well full light acclimated plant, probably due to higher excitation pressure imposed by lower temperature even at moderate irradiance. It is suggested that the biochemical plasticity of this species, highlighted by the development of these different strategies, is essential to cope successfully with these particular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams WW III, Demmig-Adams B, Verhoeven AS, Barker DH (1995) Photoinhibition during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol 22:261–276

    Article  CAS  Google Scholar 

  • Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  CAS  PubMed  Google Scholar 

  • Anderson KM (1986) Photoregulation of the composition, function and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136

    Article  CAS  Google Scholar 

  • Andersson B, Aro EM (2006) Photodamage and D1 turnover in photosystem II. In: Demmig-Adams B, Adams WW III, Matto A (eds) Photoprotection, photoinhibition, gen regulation and environment. Springer, The Netherlands, pp 337–399

    Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts; polyphenol oxidases in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Bascuñán-Godoy L, Uribe E, Zúñiga-Feest A, Corcuera LJ, Bravo LA (2006) Low temperature regulates sucrose-phosphate synthase activity in Colobanthus quitensis (Kunth) Bartl. by decreasing its sensitivity to Pi and increased activation by glucose-6-phosphate. Polar Biol 29:1011–1017

    Article  Google Scholar 

  • Bendall DS, Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229:23–38

    Article  Google Scholar 

  • Bravo LA, Saavedra-Mella F, Vera F, Guerra A, Cavieres LA, Ivanov AG, Huner NPA, Corcuera LJ (2007) Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. J Exp Bot 58:3581–3590

    Article  CAS  PubMed  Google Scholar 

  • Bravo LA, Bascuñán-Godoy L, Pérez-Torrez E, Corcuera LJ (2009) Cold hardiness in Antarctic vascular plants. In: Gusta LV, Wisniewski ME, Tanino K (eds) Plant cold hardiness from laboratory to the field. CABI Publishing, Wallingford, pp 198–213

    Chapter  Google Scholar 

  • Cabrera S, Lopez M, Tartarotti B (1997) Phytoplankton and zooplankton response to ultraviolet radiation in a high-altitude Andean lake: short- versus long-term effects. J Plankton Res 19:1565–1582

    Article  CAS  Google Scholar 

  • Casanova-Katny M, Bravo LA, Molina-Montenegro M, Corcuera LJ, Cavieres LA (2006) Photosynthetic performance of Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in a high-elevation site of the Andes of central Chile. Rev Chil Hist Nat 79:41–53

    Article  Google Scholar 

  • Cavieres LA, Arroyo MTK (1999) Tasa de enfriamiento adiabático del aire en el valle del río Molina, provincia de Santiago, Chile central (33°S). Rev Geogr Chile Terra Australis 44:79–86

    Google Scholar 

  • Croce R, Weiss S, Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274:29613–29623

    Article  CAS  PubMed  Google Scholar 

  • De Las Rivas J, Andersson B, Barber J (1992) Two sites of primary degradation of the D1-protein induced by acceptor or donor side photo-inhibition in photosystem II core complexes. FEBS Lett 301:246–252

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, Gilmore AM, Adams WW III (1996a) In vivo functions of carotenoids in higher plants. FASEB J 10:403–412

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996b) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Article  CAS  Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  • García-Plazaola JI, Becerril JM (1999) A rapid HPLC method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochem Anal 10:307–313

    Article  Google Scholar 

  • García-Plazaola JI, Becerril JM (2001) Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a mediterranean climate: implications for tree decline diagnosis. Aust J Plant Physiol 28:225–232

    Google Scholar 

  • Gianoli E, Inostroza P, Zúñiga-Feest A, Reyes-Díaz M, Cavieres LA, Bravo LA, Corcuera LJ (2004) Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Cariophyllaceae) from the Andes of Central Chile and Maritime Antarctica. Arct Antarct Alp Res 36:470–475

    Article  Google Scholar 

  • Gray GR, Ivanov AG, Krol M, Huner NPA (1998) Adjustment of thylakoid plastoquinone content and electron donor pool size in response to growth temperature and growth irradiance in Winter Rye (Secale cereale L.). Photosynth Res 56:209–221

    Article  CAS  Google Scholar 

  • Huner NPA, Öquist G, Hurry V, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37:19–39

    Article  CAS  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Kyle DJ, Ohad I, Arntzen CJ (1984) Membrane protein damage and repair: selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci 81:4070–4074

    Article  CAS  PubMed  Google Scholar 

  • Lewis Smith RI (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 234–239

    Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Logan B, Stephen CG, Adams WW III, Demmig-Adams B (1998) Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116:9–17

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Laudenbach DE, Huner NPA (1995) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109:787–795

    CAS  PubMed  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Article  CAS  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  CAS  PubMed  Google Scholar 

  • Ohad I, Kyle DJ, Arntzen CJ (1984) Membrane protein damage and repair: removal and replacement of inactivated 32-kDa polypeptides in chloroplast membranes. J Cell Biol 99:481–485

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB (1981) Photorespiration and photoinhibition. Some implications for the energetics of photosynthesis. Biochim Biophys Acta 639:77–98

    CAS  Google Scholar 

  • Pérez-Torres E, Bascuñán L, Sierra A, Bravo LA, Corcuera LJ (2006) Robustness of activity of Calvin cycle enzymes after high light and low temperature conditions in Antarctic vascular plants. Polar Biol 29:909–916

    Article  Google Scholar 

  • Polle A, Rennenberg H (1994) Photo-oxidative stress in trees. In: Foyer CH, Mullineux PM (eds) Causes of photo-oxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, pp 199–218

    Google Scholar 

  • Sattler S, Gilliland L, Magallanes-Lundback M, Pollard M, Della Penna D (2004) Vitamin E is essential for seed longevity and preventing lipid peroxidation during germination. Plant Cell 16:1419–1433

    Article  CAS  PubMed  Google Scholar 

  • Schroeter B, Olech M, Kappen L, Heitland W (1995) Ecophysiological investigations of Usnea antarctica in the maritime Antarctic. I. Annual microclimatic conditions and potential primary production. Antarct Sci 7:251–260

    Article  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Sankhalkar S, Fernandes Y (2002) Possible function of ABA in protection against photodamage by stimulating xanthophyll cycle in sorghum seedlings. Curr Sci 82:167–171

    CAS  Google Scholar 

  • Stefanowska M, Kuraś M, Kubacka-Zebalska M, Kacperska A (1999) Low temperature affects pattern of leaf growth and structure of cell walls in winter oilseed rape (Brassica napus L. var. oleifera L.). Ann Bot 84:313–319

    Article  Google Scholar 

  • Steinmüller D, Tevini M (1985) Composition and function of plastoglobuli. I. Isolation and purification from chloroplasts and chromoplasts. Planta 163:201–207

    Article  Google Scholar 

  • Streb P, Feierabend J, Bligny R (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20:1030–1040

    Article  CAS  Google Scholar 

  • Walters RG, Horton P (1994) Acclimation of Arabidopsis thaliana to the light environment: changes in composition of the photosynthetic apparatus. Planta 195:248–256

    Article  CAS  Google Scholar 

  • Xiong FS, Day TA (2001) Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol 125:738–751

    Article  CAS  PubMed  Google Scholar 

  • Xiong FS, Ruhland CT, Day TA (1999) Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol Plant 106:276–286

    Article  CAS  Google Scholar 

  • Young AJ, Phillip D, Savill J (1997) Carotenoids in higher plant photosynthesis. In: Pessaraki M (ed) Handbook of photosynthesis. Dekker, New York, pp 575–596

    Google Scholar 

Download references

Acknowledgments

Luisa Bascuñán thanks INACH for the logistics and permits to study and collect plant material in protected areas in the Maritime Antarctic and the Polish Station Arctowski for the use of their facilities. This research was also supported by FONDECYT 1060910, BFU 2007-62637 from the Spanish Ministry of Education and Science and research project UPV/EHU-GV IT-299-07. Bascuñán-Godoy thanks INACH for a fellowship to support of her Doctoral Thesis and CONICYT for a graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to León A. Bravo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bascuñán-Godoy, L., García-Plazaola, J.I., Bravo, L.A. et al. Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biol 33, 885–896 (2010). https://doi.org/10.1007/s00300-010-0765-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0765-4

Keywords

Navigation