Skip to main content
Log in

Robustness of activity of Calvin cycle enzymes after high light and low temperature conditions in Antarctic vascular plants

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Only two vascular plants have naturally colonized the Maritime Antarctic: Colobanthus quitensis and Deschampsia antarctica. We propose that one of the reasons of their success in this environment is the robustness of their CO2 assimilation machinery. In order to understand the mechanisms involved in the positive photosynthetic rates under stressful conditions, we analyzed changes in the activity of two key Calvin cycle enzymes: Ribulose bisphosphate carboxylase oxygenase (Rubisco) and stromal Fructose-1,6-bisphosphatase after high light and low temperature treatments. Our results show that the activity of both enzymes does not decrease after 48 h high light/low temperature treatments, a feature usually observed in plants adapted to harsh environments. The activation state of both enzymes remained high throughout the treatments. This feature has been related to the redox state of the chloroplast, suggesting that both plants maintain their redox balance under high light and/or low temperature conditions assayed. Both plants differed in their responsiveness to cold acclimation as observed by gas exchange and enzymatic measurements. We propose that these differences may be related to microclimate adaptations to the environment they naturally develop in the Maritime Antarctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FBPase:

Fructose-1,6-bisphosphatase

Rubisco:

Ribulose bisphosphate carboxylase oxygenase

AOS:

Active oxygen species

PFD:

Photon flux density

DTT:

Dithiothreitol

Pn:

Net photosynthesis

References

  • Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, y Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  PubMed  CAS  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Aro E-M, Virgen I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355:1419–1431

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Björkman O, Armond PA (1982) An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in the desert evergreen Nerium oleander L. Plant Cell Environ 5:85–99

    CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B Biol Sci 355:1433–1446

    Article  PubMed  CAS  Google Scholar 

  • Boese SR, Huner NPA (1990) Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis. Plant Physiol 94:1830–1836

    PubMed  Google Scholar 

  • Bravo LA, Ulloa N, Zúñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in antarctic angiosperms. Physiol Plant 111:55–65

    Article  CAS  Google Scholar 

  • Chabot BF, Chabot JF, Billings WD (1972) Ribulose-1,5-diphosphate carboxylase in arctic and alpine populations of Oxyria digyna. Photosynthetica 6:364–369

    CAS  Google Scholar 

  • Charles SA, Halliwell B (1981) Light activation of fructose bisphosphatase in photosynthetically competent pea chloroplasts. Biochem J 200:357–63

    PubMed  CAS  Google Scholar 

  • Chueca A, Sahrawy M, Pagano EA, López Gorgé J (2002) Chloroplast fructose-1,6-bisphosphatase: structure and function. Photosynth Res 74:235–249

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, van de Loo FJ, Salvucci ME (1997) The two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol 114:439–444

    PubMed  CAS  Google Scholar 

  • Dujardyn M, Foyer CH (1989) Limitation of CO2 assimilation and regulation of Benson-Calvin cycle activity in barley leaves in response to changes in irradiance, photoinhibition, and recovery. Plant Physiol 91:1562–1568

    PubMed  CAS  Google Scholar 

  • Edwards JA, Smith RIL (1988) Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the Maritime Antarctic. Br Antarct Surv Bull 81:43–63

    Google Scholar 

  • Hahn M, Walbot V (1989) Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91:930–938

    PubMed  CAS  Google Scholar 

  • Harbinson J, Genty B, Foyer CH (1990) Relationship between photosynthetic electron transport ans stromal enzyme activity in pea leaves. Plant Physiol 94:545–553

    PubMed  CAS  Google Scholar 

  • Heber U 2002 Irringen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231

    Article  PubMed  CAS  Google Scholar 

  • Holaday AS, Martindale W, Alred R, Brooks AL, Leegood RC (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol 93:1105–1114

    Google Scholar 

  • Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373

    Article  PubMed  CAS  Google Scholar 

  • Huner NPA, Migus W, Tollenaar M (1986) Leaf CO2 exchange rates in winter rye grown at cold-hardening and nonhardening temperatures. Can J Plant Sci 66:443–452

    Article  Google Scholar 

  • Hurry VM, Huner NPA (1991) Low growth temperature effects a differential inhibition of photosynthesis in spring and winter wheat. Plant Physiol 96:491–497

    Article  PubMed  Google Scholar 

  • Hurry VM, Malmberg G, Gardestrom P, Oquist G (1994) Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.). Plant Physiol 106:983–990

    PubMed  CAS  Google Scholar 

  • Jacquot JP, Lopez-Jaramillo J, Miginiac-Maslow M, Lemaire S, Cherfils J, Chueca A, Lopez-Gorge J (1997) Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Lett 401:143–147

    Article  PubMed  CAS  Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact. J Exp Bot 56:407–416

    Article  PubMed  CAS  Google Scholar 

  • Kamo M, Tsugita A, Wiessner C, Wedel N, Bartling D, Herrmann RG, Aguilar F, Gardet-Salvi L, Schurmann P (1989) Primary structure of spinach-chloroplast thioredoxin f. Protein sequencing and analysis of complete cDNA clones for spinach-chloroplast thioredoxin f. Eur J Biochem 182:315–322

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW, Boyle FA, Kendall AC, Keys AJ (1987a) Nitrate nutrition and temperature effects on wheat: enzyme composition, nitrate and total amino acid content of leaves. J Exp Bot 38:393–408

    Google Scholar 

  • Lawlor DW, Boyle FA, Young AT, Kendall AC, Keys AJ (1987b) Nitrate nutrition and temperature effects on wheat: soluble components of leaves and carbon fluxes to aminoacids and sucrose. J Exp Bot 38:1091–1103

    CAS  Google Scholar 

  • Lepiniec L, Hodges M, Gadal P, Cretin C (1992) Isolation, characterization and nucleotide sequence of a full-length pea cDNA encoding thioredoxin-f. Plant Mol Biol 18:1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  PubMed  CAS  Google Scholar 

  • Markus V, Lurie S, Bravdo B, Stevens MA, Rudich J (1981) High temperature effects on RuBP carboxylase and carbonic anhydrase activity in two tomato cultivars. Physiol Plant 53:407–412

    Article  CAS  Google Scholar 

  • Maruyama S, Yatomi M, Nakamura Y (1990) Response of rice leaves to low temperature. I. Changes in basic biochemical parameters. Plant Cell Physiol 31:303–309

    CAS  Google Scholar 

  • Morris I, Farrel K (1971) Photosynthetic rates, gross patterns of carbon dioxide assimilation and activities of ribulose diphosphate carboxylase in marine algae grown at different temperatures. Physiol Plant 25:372–377

    Article  CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK, Li X-P, Rosenberg B, Jung H-S (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    Article  PubMed  CAS  Google Scholar 

  • Öquist G, Huner NPA (1993) Cold-hardening induced resistance to photoinhibition in winter rye is dependent upon an increased capacity for photosynthesis. Planta 189:150–156

    Article  Google Scholar 

  • Perez-Torres E, Dinamarca J, Bravo LA, Corcuera LJ (2004a) Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Polar Biol 27:183–189

    Article  Google Scholar 

  • Perez-Torres E, Garcia A, Dinamarca J, Alberdi M, Gutierrez A, Gidekel M, Ivanov AG, Huner NPA, Corcuera LJ, Bravo LA (2004b) The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Funct Plant Biol 31:731–741

    Article  CAS  Google Scholar 

  • Robinson SP, Portis AR Jr (1989) Adenosine triphosphate hydrolysis by purified rubisco activase. Arch Biochem Biophys 268:93–99

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Andrews TJ, Badger MR, Price GD, von Caemmerer S (2000) The role of chloroplast electron transport and metabolites in modulation Rubisco activity in tobacco. Insights from transgenic plants with reduced amounts of cytochrome b/f complex or glyceraldehyde 3-phosphaste dehydrogenase. Plant Physiol 122:491–504

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  PubMed  CAS  Google Scholar 

  • Sassenrath GF, Ort DR, Portis AR Jr (1990) Arch Biochem Biophys 282:302–308

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26

    Article  PubMed  CAS  Google Scholar 

  • Smith RIL (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica In: Huiskes AHL, Gieskes WWC, Rozena J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 234–239

    Google Scholar 

  • Wingler A, Lea PJ, Quick P, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517–1529

    Article  PubMed  CAS  Google Scholar 

  • Xiong FS, Mueller EC, Day TA (2000) Photosynthetic and respiratory acclimation and growth response of antarctic vascular plants to contrasting temperature regimes. Am J Bot 87:700–710

    Article  PubMed  Google Scholar 

  • Xiong FS, Ruhland CT, Day T (1999) Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol Plant 106:276–286

    Article  CAS  Google Scholar 

  • Zsabo I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: ebergy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634

    Article  CAS  Google Scholar 

  • Zuñiga-Feest A, Ort D, Gutiérrez A, Gidekel M, Bravo L, Corcuera LJ (2005) Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth Res 83:75–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by CONICYT Doctoral Fellowship N° 403035, and MECESUP UCO-0214. We also thank Valeria Neira and Alexis Estay for their technical support. The authors acknowledge Instituto Antártico Chileno for the logistic support and official permits for collecting plants in protected areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Corcuera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Torres, E., Bascuñán, L., Sierra, A. et al. Robustness of activity of Calvin cycle enzymes after high light and low temperature conditions in Antarctic vascular plants. Polar Biol 29, 909–916 (2006). https://doi.org/10.1007/s00300-006-0131-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0131-8

Keywords

Navigation