Skip to main content
Log in

Influence of Nano-Y2O3 on Wear Resistance of Hypereutectic Fe–Cr–C Hardfacing Coating

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The aim of this study was the investigation of the effect of different Y2O3 additives on wear resistance of the hypereutectic Fe–Cr–C hardfacing coatings. The microstructures were observed by optical microscopy, field emission scanning electron microscopy and transmission electron microscopy, respectively. Meanwhile, the hardness was measured and the wear resistance was evaluated. Finally, the role of Y2O3 was discussed. The microstructures of the coatings consist of the primary (Cr, Fe)7C3 carbide and eutectic structure [austenite + (Cr, Fe)7C3 carbide]. Moreover, Y2O3 can refine the M7C3 carbide and improve the wear resistance of coatings obviously. Y2O3 can absorb at the surface of the M7C3 carbide and improve the wear resistance of the hypereutectic Fe–Cr–C hardfacing coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Raheleh, A.P., Reza, S.R., Reza, M., Hossein, J.: Improving the hot corrosion resistance of plasma sprayed ceria–yttria stabilized zirconia thermal barrier coatings by laser surface treatment. Mater. Des. 57, 336–341 (2014)

    Article  Google Scholar 

  2. Kazemipour, M., Shokrollahi, H., Sharafi, S.: The Influence of the matrix microstructure on abrasive wear resistance of heat-treated Fe–32Cr–4.5C wt% hardfacing alloy. Tribol. Lett. 39, 181–192 (2010). doi:10.1007/s11249-010-9634-0

    Article  Google Scholar 

  3. Ji, J., Niu, Y., Wu, J., Yu, Z.: Improvement of properties of TiN coating by optimising microstructural design. Surf. Eng. 30(1), 36–40 (2014)

    Article  Google Scholar 

  4. Lin, C.M., Chang, C.M., Chen, Y.C., Chen, J.H., Hsieh, C.C., Wu, W.T.: Microstructural evolution of hypoeutectic, near-eutectic, and hypereutectic high-carbon Cr-based hard-facing alloys. Metall. Mater. Trans. A 40(5), 1031–1038 (2009)

    Article  Google Scholar 

  5. Coronado, J.J., Caicedo, H.F., Gómez, A.L.: The effects of welding processes on abrasive wear resistance for hardfacing deposits. Tribol. Int. 42, 745–749 (2009)

    Article  Google Scholar 

  6. Buchanan, V.E.: Solidification and microstructural characterisation of iron–chromium based hardfaced coatings deposited by SMAW and electric arc spraying. Surf. Coat. Technol. 203, 3638–3646 (2009)

    Article  Google Scholar 

  7. Sabet, H., Khierandish, Sh, Mirdamadi, Sh, Goodarzi, M.: The microstructure and abrasive wear resistance of Fe–Cr–C hardfacing alloys with the composition of hypoeutectic, eutectic, and hypereutectic at Cr/C = 6. Tribol. Lett. 44, 237–245 (2011). doi:10.1007/s11249-011-9842-2

    Article  Google Scholar 

  8. Hanlon, D.N., Rainforth, W.M., Sellars, C.M.: The rolling/sliding wear response of conventionally processed and spray formed high chromium content cast iron at ambient and elevated temperature. Wear 225–229, 587–599 (1999)

    Article  Google Scholar 

  9. Carpenter, S.D., Carpenter, D.: Stacking faults and superlattice observations during transmission electron microscopy of a (Fe, Cr)7C3 carbide. Mater. Lett. 57, 4456–4465 (2003)

    Article  Google Scholar 

  10. Carpenter, S.D., Carpenter, D., Pearce, J.T.H.: XRD and electron microscope study of a heat treated 26.6 % chromium white iron microstructure. Mater. Chem. Phy. 101, 49–55 (2007)

    Article  Google Scholar 

  11. Carpenter, S.D., Carpenter, D.E.O.S., Pearce, J.T.H.: The nature of stacking faults within iron-chromium carbide of the type (Fe, Cr)7C3. J. Alloys Compd. 494, 245–251 (2010)

    Article  Google Scholar 

  12. Chang, C.M., Chen, L.H., Lin, C.M., Chen, J.H., Fan, C.M., Wu, W.T.: Microstructure and wear characteristics of hypereutectic Fe–Cr–C cladding with various carbon contents. Surf. Coat. Technol. 205(2), 245–250 (2010)

    Article  Google Scholar 

  13. Coronado, J.J.: Effect of (Fe, Cr)7C3 carbide orientation on abrasion wear resistance and fracture toughness. Wear 270, 287–293 (2011)

    Article  Google Scholar 

  14. Veinthal, R., Sergejev, F., Zikin, A., Tarbe, R., Hornung, J.: Abrasive impact wear and surface fatigue wear behavior of Fe–Cr–C PTA overlays. Wear 301, 102–108 (2013)

    Article  Google Scholar 

  15. Hornung, J., Zikin, A., Pichelbauer, K., Kalin, M., Kirchgaßner, M.: Influence of cooling speed on the microstructure and wear behavior of hypereutectic Fe–Cr–C hardfacings. Mater. Sci. Eng., A 576, 243–251 (2013)

    Article  Google Scholar 

  16. Wang, S.R., Song, L.H., Yang, Q., Wang, M.: Effect of carbide orientation on impact-abrasive wear resistance of high-Cr iron used in shot blast machine. Tribol. Lett. 50, 439–448 (2013)

    Article  Google Scholar 

  17. Wang, K.L., Zhang, Q.B., Sun, M.L., Wei, X.G., Zhu, Y.M.: Microstructure and corrosion resistance of laser clad coatings with rare earth elements. Appl. Sur. Sci. 174, 191–200 (2001)

    Article  Google Scholar 

  18. Qu, Y.H., Xing, J., Zhi, X., Peng, J., Fu, H.: Effect of cerium on the as-cast microstructure of a hypereutectic high chromium cast iron. Mater. Lett. 62, 3024–3027 (2008)

    Article  Google Scholar 

  19. Liu, X.B., Yu, R.L.: Effects of La2O3 on microstructure and wear properties of laser clad γ/Cr7C3/TiC composite coatings on TiAl intermetallic alloy. Mater. Chem. Phy. 101, 448–454 (2007)

    Article  Google Scholar 

  20. Yang, J., Hao, F.F., Li, D., Zhou, Y.F., Ren, X.J., Yang, Y.L., Yang, Q.X.: Effect of RE oxide on growth dynamics of primary austenite grain in hardfacing layer of medium-high carbon steel. J. Rare. Earth. 30, 814–819 (2012)

    Article  Google Scholar 

  21. Yang, J., Hou, X.R., Zhang, P.F., Zhou, Y.F., Xing, X.L., Ren, X.J., Yang, Q.X.: First-principles calculations on LaAlO3 as the heterogeneous nucleus of the austenite. Comput. Theor. Chem. 1029, 48–56 (2014)

    Article  Google Scholar 

  22. Hao, F.F., Liao, B., Li, D., Dan, T., Ren, X.J., Yang, Q.X.: Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism. J. Rare. Earth. 29(6), 609–613 (2011)

    Article  Google Scholar 

  23. Zhou, Y.F., Yang, Y.L., Jiang, Y.W., Yang, J., Ren, X.J., Yang, Q.X.: Fe-24 wt% Cr-4.1 wt% C hardfacing alloy: microstructure and carbide refinement mechanisms with ceria additive. Mater. Charact. 72, 77–86 (2012)

    Article  Google Scholar 

  24. Tian, Y.S., Chen, C.Z., Chen, L.X., Huo, Q.H.: Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique. Scripta Mater. 54, 847–852 (2006)

    Article  Google Scholar 

  25. Wu, C.M.L., Yu, D.Q., Law, C.M.T., Wang, L.: Properties of lead-free solder alloys with rare earth element additions. Mater. Sci. Eng., R 44, 1–44 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for projects supported by Program for National Nature Science Foundation of China (51271163) and (51471148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. X. Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 895 kb)

Supplementary material 2 (DOC 817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, X., Zhou, Y.F., Zhao, B. et al. Influence of Nano-Y2O3 on Wear Resistance of Hypereutectic Fe–Cr–C Hardfacing Coating. Tribol Lett 58, 23 (2015). https://doi.org/10.1007/s11249-015-0475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0475-8

Keywords

Navigation