Skip to main content
Log in

Microstructural Evolution of Hypoeutectic, Near-Eutectic, and Hypereutectic High-Carbon Cr-Based Hard-Facing Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A series of high-carbon Cr-based hard-facing alloys were successfully fabricated on a substrate of 0.45 pct C carbon steel by gas tungsten arc welding (GTAW) process using various alloy fillers with chromium and chromium carbide, CrC (Cr:C = 4:1) powders. These claddings were designed to observe hypoeutectic, near-eutectic, and hypereutectic structures with various (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides at room temperature. According to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and optical microscopy (OM), in 3.8 pct C cladding, the microstructure consisted of the primary carbides with outer shells (Cr,Fe)23C6 surrounding (Cr,Fe)7C3 cores and [α + (Cr,Fe)23C6] eutectic structures. In 5.9 pct C cladding, the composite comprised primary (Cr,Fe)7C3 as the reinforcing phase and [α + (Cr,Fe)7C3] eutectic structures as matrix. Various morphologies of carbides were found in primary and eutectic (Cr,Fe)7C3 carbides, which included bladelike and rodlike (with a hexagonal cross section). The 5.9C cladding with great amounts of primary (Cr,Fe)7C3 carbides had the highest hardness (approximately HRC 63.9) of the all conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. ASM International Handbook Committee: ASM Handbook, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 18, pp. 758–68.

  2. I.M. Hutchings: Tribology: Friction and Wear of Engineering Materials, Elsevier Limited, Cambridge, 1992, pp. 133–47.

  3. S.O. Yılmaz: Surf. Coat. Technol., 2006, vol. 201, pp. 1568–75.

    Article  Google Scholar 

  4. C. Fan, M.C. Chen, C.M. Chang, and W. Wu: Surf. Coat. Technol., 2006, vol. 201, pp. 908–12.

    Article  CAS  Google Scholar 

  5. C.W. Kuo, C. Fan, S.H. Wu, and W. Wu: Mater. Trans., 2007, vol. 48, pp. 2324–28.

    Article  CAS  Google Scholar 

  6. P.Q. La, Q.J. Xue, and W.M. Liu: Wear, 2001, vol. 249, pp. 94–100.

    Article  CAS  Google Scholar 

  7. S. Frangini, A. Masci, and A.D. Bartolomeo: Surf. Coat. Technol., 2002, vol. 149, pp. 279–86.

    Article  CAS  Google Scholar 

  8. P.Q. La, Q.J. Xue, W.M. Liu, and S.R. Yang: Wear, 2000, vol. 240, pp. 1–8.

    Article  CAS  Google Scholar 

  9. A.F. Zhang, J.D. Xing, L. Fang, and J.Y. Su: Wear, 2004, vol. 257, pp. 198–204.

    Article  CAS  Google Scholar 

  10. H. Berns: Wear, 2003, vol. 254, pp. 47–54.

    Article  CAS  Google Scholar 

  11. J.D. Xing, Y.M. Gao, E.Z. Wang, and C.G. Bao: Wear, 2002, vol. 252, pp. 755–60.

    Article  CAS  Google Scholar 

  12. S. Aso, S. Goto, Y. Komatsu, and W. Hartono: Wear, 2001, vol. 250, pp. 511–17.

    Article  Google Scholar 

  13. A.G. Blake, A.A. Mangaly, M.A. Everett, and A.H. Hammeke: SPIE Conference Proceedings, 1st ed., SPIE Publications, Bellingham, WA, 1988, pp. 56–61.

  14. E. Eiholzer, C. Cusano, and J. Mazumder: Proc. Laser Inst. Am., 1984, vol. 44, pp. 159–67.

    CAS  Google Scholar 

  15. K. Komvopoulo and K. Nagarathnam: J. Eng. Mater. Technol., 1990, vol. 112, pp. 131–43.

    Article  Google Scholar 

  16. O. Yılmaz, M. Özenbaş, and M.H. Korkut: Mater. Sci. Technol., 2002, vol. 18, pp. 1209–17.

    Article  Google Scholar 

  17. M.H. Korkut, O. Yilmaz, and S. Buytoz: Surf. Coat. Technol., 2002, vol. 157, pp. 5–13.

    Article  CAS  Google Scholar 

  18. S. Buytoz, M.M. Yildirim, and H. Eren: Mater. Lett., 2005, vol. 59, pp. 607–14.

    Article  CAS  Google Scholar 

  19. S.O. Yılmaz: Surf. Coat. Technol., 2005, vol. 194, pp. 175–83.

    Article  Google Scholar 

  20. A. Lesko and E. Navara: Mater. Charact., 1996, vol. 36, pp. 349–56.

    Article  CAS  Google Scholar 

  21. G.V. Raynor and V.G. Rivlin: Phase Equilibria in Iron Ternary Alloys, The Institute of Metals, Bath Press, United Kingdom, 1988, pp. 143–56.

    Google Scholar 

  22. K. Bungardt, E. Kunze, and E. Horn: Arch. Eisenhüttenwes., 1958, vol. 29, pp. 193–201.

    CAS  Google Scholar 

  23. M. Chochol, J.F. Elliott and D.M. Kundrat: Metall. Trans. B, 1984, vol. 15B, pp. 663–76.

    ADS  Google Scholar 

  24. R.S. Jackson: J. Iron Steel Inst., 1970, vol. 208, pp. 163–70.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the National Science Council of Taiwan for its financial support (Project No. NSC97-2221-E-005-019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weite Wu.

Additional information

Manuscript submitted October 22, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CM., Chang, CM., Chen, JH. et al. Microstructural Evolution of Hypoeutectic, Near-Eutectic, and Hypereutectic High-Carbon Cr-Based Hard-Facing Alloys. Metall Mater Trans A 40, 1031–1038 (2009). https://doi.org/10.1007/s11661-009-9784-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9784-6

Keywords

Navigation