Skip to main content
Log in

Microstructure and High-Temperature Tribological Properties of Laser-Cladded WC10Co4Cr–xTi2AlC Coatings

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To enhance the tribological performance of ceramic coatings, the Ti2AlC phase was used as reinforcement to WC10Co4Cr coating by laser cladding. The microstructure and phases of obtained coatings were analyzed using a super-depth field microscope and X-ray diffraction, respectively. The effects of Ti2AlC mass fraction on the tribological properties of WC10Co4Cr-xTi2AlC coatings at 500 °C were investigated using a high-temperature wear tester, and the wear mechanism was also discussed in detail. The results demonstrate that the hardness of WC10Co4Cr-0, − 5, − 10 and − 15 pct Ti2AlC coatings is 1156 ± 57, 1514 ± 75, 1423 ± 71, and 1354 ± 67 HV0.5, respectively, showing that the WC10Co4Cr–5 pct Ti2AlC coating have the highest hardness among the four kinds of coatings. The average coefficients of friction of WC10Co4Cr-0, − 5, − 10, and − 15 pct Ti2AlC coatings is 0.828, 0.419, 0.591, and 0.738, respectively, and the corresponding wear rates are 55.85, 22.71, 34.05, and 39.33 μm3 N−1 mm−1, respectively. The wear mechanism of WC10Co4Cr–xTi2AlC coatings is abrasive wear, fatigue wear, adhesive wear, and oxidative wear, in which the appropriate Ti2AlC mass fraction plays the role of wear resistance in the friction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Zhu, Z. Zhang, and J. Xie: Mater. Sci. Eng. A, 2019, vol. 752, pp. 101–14. https://doi.org/10.1016/j.msea.2019.02.085.

    Article  CAS  Google Scholar 

  2. B. Breidenstein, B. Denkena, P. Wolters, M. Keitel, W. Tillmann, D. Stangier, and N.F. Lopes Dias: Mater. Today Sustain., 2023, vol. 24, p. 100507. https://doi.org/10.1016/j.mtsust.2023.100507.

    Article  Google Scholar 

  3. H. Li, D. Xiang, Y. Cao, S. Zhao, and G. Tu: Ceram. Int., 2017, vol. 43(17), pp. 14726–31. https://doi.org/10.1016/j.ceramint.2017.07.204.

    Article  CAS  Google Scholar 

  4. H. Yang, X. Wu, G. Cao, and Z. Yang: Surf. Coat. Technol., 2016, vol. 307, pp. 506–16. https://doi.org/10.1016/j.surfcoat.2016.09.029.

    Article  CAS  Google Scholar 

  5. D. Wang, L. Zhang, X. Luo, and C. Li: Corros. Sci., 2022, vol. 209, p. 110800. https://doi.org/10.1016/j.corsci.2022.110800.

    Article  CAS  Google Scholar 

  6. S. Sun, J. Wang, J. Xu, X. Cheng, C. Jing, Z. Chen, H. Ru, Y. Liu, and J. Jiao: Mater. Today Commun., 2023, vol. 37, p. 106939. https://doi.org/10.1016/j.mtcomm.2023.106939.

    Article  CAS  Google Scholar 

  7. L. Kang, F. Chen, B. Wu, X. Liu, and H. Ge: J. Constr. Steel Res., 2022, vol. 199, p. 107603. https://doi.org/10.1016/j.jcsr.2022.107603.

    Article  Google Scholar 

  8. J. Jiang, W. Hou, X. Feng, and Y. Shen: Surf. Coat. Technol., 2023, vol. 464, p. 129577. https://doi.org/10.1016/j.surfcoat.2023.129577.

    Article  CAS  Google Scholar 

  9. C. Chen, A. Feng, Y. Wei, Y. Wang, X. Pan, and X. Song: Mater. Lett., 2023, vol. 337, p. 133939. https://doi.org/10.1016/j.matlet.2023.133939.

    Article  CAS  Google Scholar 

  10. Y. Zhu, H. Zhou, Z. Chen, Z. Wang, F. He, and C. Xu: Micromachines, 2022, vol. 13(5), p. 653. https://doi.org/10.3390/mi13050653.

    Article  PubMed  PubMed Central  Google Scholar 

  11. J. Ma, Y. Duan, W. Chen, Q. Li, J. Guo, X. Cao, H. Tan, J. Cheng, Q. Sun, and J. Yang: Wear, 2023, vol. 530–31, p. 205031. https://doi.org/10.1016/j.wear.2023.205031.

    Article  CAS  Google Scholar 

  12. J. Liu, S. Yang, W. Xia, X. Jiang, and C. Gui: J. Alloy. Compd., 2016, vol. 654, pp. 63–70. https://doi.org/10.1016/j.jallcom.2015.09.130.

    Article  CAS  Google Scholar 

  13. H. Wang, M. Gee, Q. Qiu, H. Zhang, X. Liu, H. Nie, X. Song, and Z. Nie: J. Mater. Sci. Technol., 2019, vol. 35(11), pp. 2435–46. https://doi.org/10.1016/j.jmst.2019.07.016.

    Article  CAS  Google Scholar 

  14. Z. Wang, M. Tan, J. Wang, J. Zeng, F. Zhao, X. Xiao, S. Xu, B. Liu, L. Gong, Q. Sui, R. Zhang, B. Han, and J. Liu: J. Alloy. Compd., 2021, vol. 878, p. 160127. https://doi.org/10.1016/j.jallcom.2021.160127.

    Article  CAS  Google Scholar 

  15. M.W. Barsoum: Prog. Solid State Ch., 2000, vol. 28(14), pp. 201–81. https://doi.org/10.1016/S0079-6786(00)00006-6.

    Article  CAS  Google Scholar 

  16. E. Hugon, O. Rapaud, R. Lucas, and T. Chotard: Open Ceram., 2023, vol. 15, p. 100398. https://doi.org/10.1016/j.oceram.2023.100398.

    Article  CAS  Google Scholar 

  17. H. Xiao, S. Zhao, Q. Liu, Y. Li, S. Zhao, F. Luo, Y. Wang, Q. Huang, and C. Wang: Acta Mater., 2023, vol. 248, p. 118783. https://doi.org/10.1016/j.actamat.2023.118783.

    Article  CAS  Google Scholar 

  18. H. Chen, Y. Du, D. Wang, C. Zhang, G. Yang, B. Liu, Y. Gao, and S. Shi: Ceram. Int., 2018, vol. 44(18), pp. 22520–28. https://doi.org/10.1016/j.ceramint.2018.09.023.

    Article  CAS  Google Scholar 

  19. G. Song, Y. Pei, W. Sloof, S. Li, J. Hosson, and S. Zwaag: Scripta Mater., 2008, vol. 58(1), pp. 13–16. https://doi.org/10.1016/j.scriptamat.2007.09.006.

    Article  CAS  Google Scholar 

  20. S. Li, G. Song, K. Kwakernaak, S. Zwaag, and W. Sloof: J. Eur. Ceram. Soc., 2012, vol. 21(8), pp. 1813–20. https://doi.org/10.1016/j.jeurceramsoc.2012.01.017.

    Article  CAS  Google Scholar 

  21. S. Hua, M. Pang, F. Ji, J. Chen, and G. Liu: Mater. Today Commun., 2023, vol. 34, p. 105165. https://doi.org/10.1016/j.mtcomm.2022.105165.

    Article  CAS  Google Scholar 

  22. C. Jiang, J. Zhang, Y. Chen, Z. Hou, Q. Zhao, Y. Li, L. Zhu, F. Zhang, and Y. Zhao: Int. J. Refract Metal Hard Mater., 2022, vol. 107, p. 105902. https://doi.org/10.1016/j.ijrmhm.2022.105902.

    Article  CAS  Google Scholar 

  23. P. Tatarko, M. Kašiarová, Z. Chlup, J. Dusza, P. Šajgalík, and I. Vávra: Wear, 2013, vol. 300(1–2), pp. 155–62. https://doi.org/10.1016/j.wear.2013.01.030.

    Article  CAS  Google Scholar 

  24. W. Shao, Y. Zhou, L. Zhou, L. Rao, X. Xing, Z. Shi, and Q. Yang: Mater. Design, 2021, vol. 211, p. 110133. https://doi.org/10.1016/j.matdes.2021.110133.

    Article  CAS  Google Scholar 

  25. L. Zhang, C. Wang, X. Huang, R. Nie, J. Zhu, and X. Yan: Int. J. Refract Metal Hard Mater., 2023, vol. 115, p. 106309. https://doi.org/10.1016/j.ijrmhm.2023.106309.

    Article  CAS  Google Scholar 

  26. G. Lee, T. Kim, W. Sloof, and K. Lee: Ceram. Int., 2021, vol. 47(16), pp. 22478–86. https://doi.org/10.1016/j.ceramint.2021.04.257.

    Article  CAS  Google Scholar 

  27. V. Katranidis, S. Gu, B. Allcock, and S. Kamnis: Surf. Coat. Technol., 2017, vol. 311, pp. 206–15. https://doi.org/10.1016/j.surfcoat.2017.01.015.

    Article  CAS  Google Scholar 

  28. Z. Liu, J. Shi, C. He, F. Wang, and D. Kong: Int. J. Appl. Ceram. Technol., 2023, vol. 20(5), pp. 2847–59. https://doi.org/10.1111/ijac.14403.

    Article  CAS  Google Scholar 

  29. A. Khorram, A. Jamaloei, and R. Sepehrnia: Optik, 2022, vol. 264, p. 169407. https://doi.org/10.1016/j.ijleo.2022.169407.

    Article  CAS  Google Scholar 

  30. G. Cui, B. Han, J. Zhao, and M. Li: Tribol. Int., 2019, vol. 134, pp. 36–49. https://doi.org/10.1016/j.triboint.2019.01.019.

    Article  CAS  Google Scholar 

  31. A. Sharma and D. Gupta: Appl. Surf. Sci., 2012, vol. 258(15), pp. 5583–92. https://doi.org/10.1016/j.apsusc.2012.02.019.

    Article  CAS  Google Scholar 

  32. D. Ravnikar, N. Dahotre, and J. Grum: Appl. Surf. Sci., 2013, vol. 282, pp. 914–22. https://doi.org/10.1016/j.apsusc.2013.06.089.

    Article  CAS  Google Scholar 

  33. T. Sudaprasert, P. Shipway, and D. McCartney: Wear, 2003, vol. 255(7–12), pp. 943–49. https://doi.org/10.1016/S0043-1648(03)00293-X.

    Article  CAS  Google Scholar 

  34. Y. Zhou, X. Liu, J. Kang, W. Yue, W. Qin, G. Ma, Z. Fu, L. Zhu, D. She, H. Wang, J. Liang, W. Weng, and C. Wang: Eng. Fail. Anal., 2020, vol. 109, p. 104338. https://doi.org/10.1016/j.engfailanal.2019.104338.

    Article  CAS  Google Scholar 

  35. D. Stewart, P. Shipway, and D. McCartney: Acta Mater., 2000, vol. 48(7), pp. 1593–1604. https://doi.org/10.1016/S1359-6454(99)00440-1.

    Article  CAS  Google Scholar 

  36. H. Jiang, F. Su, Y. Yang, D. Zhang, Y. Hong, H. Cui, F. Min, C. Wang, G. Li, and J. Zhang: Int. J. Refract Metal Hard Mater., 2023, vol. 115, p. 106303. https://doi.org/10.1016/j.ijrmhm.2023.106303.

    Article  CAS  Google Scholar 

  37. M. Yin, Y. Shao, X. Kang, J. Long, and X. Zhang: Tribol. Int., 2023, vol. 177, p. 107975. https://doi.org/10.1016/j.triboint.2022.107975.

    Article  CAS  Google Scholar 

  38. L. Zhao, Z. Zhang, B. Wang, S. Xu, and C. Si: Mater. Lett., 2022, vol. 328, p. 133203. https://doi.org/10.1016/j.matlet.2022.133203.

    Article  CAS  Google Scholar 

  39. Y. Yu, Y. Wu, S. Hong, J. Cheng, S. Zhu, and H. Li: Ceram. Int., 2023, vol. 49(17–B), pp. 28560–70. https://doi.org/10.1016/j.ceramint.2023.06.148.

    Article  CAS  Google Scholar 

  40. Y. Chen, D. Wang, W. Wang, Y. Liu, Y. Sato, T. Yamaguchi, Y. Chen, and C. Wang: Surf. Coat. Technol., 2021, vol. 422, pp. 127–493. https://doi.org/10.1016/j.surfcoat.2021.127493.

    Article  CAS  Google Scholar 

  41. V. Kumar, R. Verma, and S. Shrivastava: Mater. Today Proc., 2023, https://doi.org/10.1016/j.matpr.2023.08.044.

    Article  PubMed  Google Scholar 

  42. H. Wang, H. Lu, X. Song, X. Yan, X. Liu, and Z. Nie: Corros. Sci., 2019, vol. 147, pp. 372–83. https://doi.org/10.1016/j.corsci.2018.11.028.

    Article  CAS  Google Scholar 

  43. R. Khuengpukheiw, A. Wisitsoraat, and C. Saikaew: Wear, 2021, vol. 484–485, p. 203699. https://doi.org/10.1016/j.wear.2021.203699.

    Article  CAS  Google Scholar 

  44. Q. Cao, L. Fan, H. Chen, Y. Hou, L. Dong, and Z. Ni: Tribol. Int., 2022, vol. 176, p. 107939. https://doi.org/10.1016/j.triboint.2022.107939.

    Article  CAS  Google Scholar 

  45. G. Chen, X. Liu, F. Zhang, Q. Liu, H. Ou, and S. Zhang: Surf. Coat. Technol., 2023, vol. 472, p. 129930. https://doi.org/10.1016/j.surfcoat.2023.129930.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong Dejun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, X., Dejun, K. Microstructure and High-Temperature Tribological Properties of Laser-Cladded WC10Co4Cr–xTi2AlC Coatings. Metall Mater Trans A 55, 1976–1987 (2024). https://doi.org/10.1007/s11661-024-07373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07373-0

Navigation