Skip to main content
Log in

The Microstructure and Abrasive Wear Resistance of Fe–Cr–C Hardfacing Alloys with the Composition of Hypoeutectic, Eutectic, and Hypereutectic at \( \frac{Cr}{C} = 6 \)

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this investigation, three Fe–Cr–C hardfacing alloys with different carbon and chromium contents and in constant ratio of \( \left( {\frac{Cr}{C} = 6} \right) \) were fabricated by GTAW on AISI 1010 mild steel substrates. The OES, OM, SEM, and XRD techniques and Vickers hardness method were used for determining chemical composition, hardness, and studying the microstructure of the hardface alloys. The OES, OM, and XRD examination results indicated that different carbon and chromium contents of hardface alloys produced hypoeutectic/eutectic/hypereutectic structures. By increasing the carbon and chromium contents in the chemical composition of hardface alloys, the volume fraction of the total (Cr, Fe)7C3 is increased resulting to decreasing in total the austenite volume fraction and increasing the hardness of the surface. Studying the microstructure after wear test (ASTM G65) shows that at the edge of the worn surface, the transformation of austenite to martensite had occurred in all the samples. The wear test results indicate that the highest wear resistance is gained in the hypoeutectic structure with maximum hardness after the wear test. In addition, abrasive wear micromechanisms in hypoeutectic/eutectic/hypereutectic were recognized as: ploughing + cutting/ploughing + cutting + cracking/cracking + cutting, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cheng, J.B., Xu, B.S., Liang, X.B., Wu, Y.W.: Microstructure and mechanical characteristics of iron-based coating produced by plasma transferred arc cladding process. Mat. Sci. Eng. A 492, 407–412 (2008)

    Article  Google Scholar 

  2. Liu, Y.F., Xia, Z.Y., Han, J.M., Zhang, G.L., Yang, S.Z.: Microstructure and wear behavior of (Cr, Fe)7C3 reinforced composite coating produced by plasma transferred arc weld-surfacing process. Surf. Coat. Technol. 201, 863–867 (2006)

    Article  CAS  Google Scholar 

  3. Coronado, J.J., Caicedo, H.F., Gomez, A.L.: The effects of welding processes on abrasive wear resistance for hard-facing deposits. Trib Int. 42, 745–749 (2009)

    Article  CAS  Google Scholar 

  4. Lee, K.Y., Lee, S.H., Kim, Y., Hong, H.S., Oh, Y.M., Kim, S.J.: The effects of additive elements on the sliding wear behavior of fe-base hard-facing alloys. Wear 225, 481–483 (2003)

    Article  Google Scholar 

  5. Buytoz, S., Yildirim, M.M., Eren, H.: Microstructural and Micro-hardness characteristics of gas tungsten arc synthesized Fe–Cr–C coating on AISI 4340. Mat Let 59, 607–614 (2005)

    Article  CAS  Google Scholar 

  6. Kirchgabner, M., Badisch, E., Franek, F.: Behavior of iron-based hard-facing alloys under abrasion and impact. Wear 265, 772–779 (2008)

    Article  Google Scholar 

  7. Liu, J., Wang, L., Huang, J.: PTA clad (Cr, Fe)7C3–Fe in situ ceramal composite coating. J. Univ. Sci. Technol. Beij. 13(6), 538–541 (2006)

    Article  CAS  Google Scholar 

  8. Atamert, S., Bhadeshia, H.K.D.H.: Microstructure and stability of Fe–Cr–C hardfacing alloys. Mat. Sci. Eng. A 130, 101–111 (1990)

    Article  Google Scholar 

  9. Zumelzu, E., Goyos, I., Cabezas, C., Poitz, O., Parada, A.: Wear and corrosion behaviour of high chromium (14–30%Cr) cast iron alloys. Mat. Proc. Technol. 128, 250–255 (2002)

    Article  CAS  Google Scholar 

  10. Lin, C.M., Chang, C.M., Chen, J.H., Hsieh, C.C., Wu, W.: Microstructural evolution of hypereutectic, near eutectic and hypereutectic high-carbon Cr-based hardfacing alloys. Met. Mat. Trans A 40A, 1031–1038 (2009)

    Article  CAS  Google Scholar 

  11. Chang, C.M., Lin, C.M., Hsieh, C.C., Chen, J.H., Wu, W.: Micro-structural characteristics of Fe-40%Cr-xC hardfacing alloys with [1.0–4.0 wt%] carbon content. J. Alloy Comp. 487, 83–89 (2009)

    Article  CAS  Google Scholar 

  12. Dasgupta, R., Thakur, R., Yadav, M.S., Jha, A.K.: High stress abrasive wear behavior of a hardfacing alloy: effects of some experimental factors. Wear 236, 368–374 (1999)

    Article  CAS  Google Scholar 

  13. Dwiredi, D.K.: Microstructure and abrasive wear behavior of iron base hardfacing. Mat. Sci. Tech. 20, 1326–1330 (2004)

    Article  Google Scholar 

  14. Liu, Y.F., Han, J.M., Li, R.H., Li, W.J., Xu, X.Y., Li, W., Yang, S.Z.: Microstructure and dry-sliding resistance of PTA clad (Cr, Fe)7C3/γ-Fe ceramal composite coating. Appl. Surf. Sci. 252, 7539–7544 (2006)

    Article  CAS  Google Scholar 

  15. Chang, C.M., Chen, L.H., Lin, C.M., Chen, J.H., Fan, C.M., Wu, W.: Microstructure and wear characteristics of hypereutectic Fe–Cr–C cladding with various carbon contents. Surf. Coat. Tech. 205, 245–250 (2010)

    Article  CAS  Google Scholar 

  16. Chang, C.M., Chen, Y.C., WU, W.: Microstructural and abrasive characteristics of high carbon Fe–Cr–C hradfacing alloy. Trib. Int. 43, 929–934 (2010)

    Article  CAS  Google Scholar 

  17. Eroglu, M., Ozdemir, N.: Tungsten–inert gas surface alloying of a low carbon steel. Surf. Coat Technol. 154, 209–217 (2002)

    Article  CAS  Google Scholar 

  18. Collins, W.K., Watson, J.C.: Metallographic etching for carbide volume fraction of high-chromium white cast iron. Mat. Char. 24(4), 379–386 (1990)

    Article  CAS  Google Scholar 

  19. Carpenter, S.D., Carpenter, D.: X-ray diffraction of M7C3 carbide within a high chromium white iron. Mat. Let. 57, 4456–4459 (2003)

    Article  CAS  Google Scholar 

  20. Bondar, A., Ivanchento, V., Kozbv, A., Todenac, J.C.: Carbon–iron ternary alloy systems phase diagrams–crystallographic and thermodynamic data: MSIT, group IV, vol. 11, pp. 1–56. Springer-Verlag, Berlin, Heidelberg (2008)

    Google Scholar 

  21. Yamamoto, K., Liliac, M.M., Ogi, K.: Thermodynamic evaluation of solidification structure of high chromium white cast iron. Int. J. Cast. Met. Res. 16, 4435–4440 (2003)

    Google Scholar 

  22. Chang, C.M., Lin, C.M., Hsieh, C.C., Chen, J.H., Fan, C.M., Wu, W.: Effect of carbon content on microstructural characteristics of the hypereutectic Fe–Cr–C claddings. Mat. Chem. Phys 117, 257–261 (2009)

    Article  CAS  Google Scholar 

  23. Correa, E.O., Alcantara, N.G., Tecco, D.G., Kumar, R.V.: The relationship between the microstructure and abrasive resistance of a hardfacing alloy in the Fe–Cr–C–Nb–V System. Met. Mat. Trans A. 38A, 1671–1680 (2007)

    Article  CAS  Google Scholar 

  24. Choteborsky, R., Hrabe, P., Muller, M., Sarkoca, J., Jirkam, M.: Abrasive wear of high chromium Fe–Cr–C hardfacing alloys. Res. Agr. Eng. 4(54), 192–198 (2008)

    Google Scholar 

  25. Chatterjee, S., Pal, T.K.: Wear behavior of hardfacing deposits on cast iron. Wear 255, 417–425 (2003)

    Article  CAS  Google Scholar 

  26. Lin, C.M., Chang, C.M., Chen, J.H., Wu, W.: The effects of additive elements on the microstructure characteristics and mechanical properties of Cr–Fe–C hardfacing alloys. J. Alloy Comp. 498, 130–136 (2010)

    Article  Google Scholar 

  27. Buchanan, V.E., Mccartney, D.G., Shipway, P.H.: A comparison of the abrasive wear behavior of iron-chromium based hardfaced coatings deposited by SMAW and electric arc spraying. Wear 267, 542–549 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sabet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabet, H., Khierandish, S., Mirdamadi, S. et al. The Microstructure and Abrasive Wear Resistance of Fe–Cr–C Hardfacing Alloys with the Composition of Hypoeutectic, Eutectic, and Hypereutectic at \( \frac{Cr}{C} = 6 \) . Tribol Lett 44, 237 (2011). https://doi.org/10.1007/s11249-011-9842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-011-9842-2

Keywords

Navigation