Skip to main content
Log in

Microstructure and Properties of CeO2-Modified FeCoCrAlNiTi High-Entropy Alloy Coatings by Laser Surface Alloying

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The FeCoCrAlNiTi high-entropy alloy (HEA) coatings modified by CeO2 were synthesized on 304 stainless steel substrate with Co-Cr-Al-Ni-Ti-xCeO2 powders by laser high-entropy alloying. The phase composition, microstructure and nano-mechanical and wear properties of FeCoCrAlNiTi-based HEAs were investigated by performing XRD, SEM, EBSD, nanoindentation testing and wear resistance tests. The results displayed that the FeCoCrAlNiTi-xCeO2 HEA coating only had simple FCC and BCC solid solution phases. The microstructure of the FeCoCrAlNiTi-xCeO2 exhibited typical dendrite and interdendritic structures, and the addition of CeO2 resulted in the refined microstructure of the alloyed coating. It was found that BCC phase structure predominantly distributed at the grain boundaries in the HEAs. For the 1 wt.% CeO2 adding HEA, the ratios of the hardness (H) and elastic modulus (E) were much higher than that of FeCoCrAlNiTi HEA coating, indicating that it had the satisfactory property for resistance to scoring and plastic deformation. The wear mechanisms were abrasive, oxidation and adhesive. Among of the three samples, FeCoCrAlNiTi-1 wt.% CeO2 HEA coating displayed the best wear resistance, and the specific wear rate and wear volume loss were 2.748 × 10–5 mm3/N m and 3.71 × 106 μm3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater 6, 299–303 (2004)

    CAS  Google Scholar 

  2. Z.Z. Li, S.T. Zhao, R.O. Ritchie, and M.A. Meyers, Mechanical Properties of High-Entropy Alloys with Emphasis on Face-Centered Cubic Alloys. Prog. Mater. Sci. 102, 296–345 (2019)

    CAS  Google Scholar 

  3. H. Cheng, X.Q. Liu, Q.H. Tang, W.G. Wang, X.H. Yan, and P.Q. Dai, Microstructure and Mechanical Properties of FeCoCrNiMnAlx High-Entropy Alloys Prepared by Mechanical Alloying and Hot-Pressed Sintering. J. Alloys Compd. 775, 742–751 (2019)

    CAS  Google Scholar 

  4. Z.P. Tong, X.D. Ren, J.F. Jiao, W.F. Zhou, Y.P. Ren, Y.X. Ye, E.A. Larson, and J.Y. Gu, Laser Additive Manufacturing of FeCrCoMnNi High-Entropy Alloy, Effect of Heat Treatment on Microstructure, Residual Stress and Mechanical Property. J. Alloys Compd. 785, 1144–1159 (2019)

    CAS  Google Scholar 

  5. A. Shabani, and M.R. Toroghinejad, Investigation of Microstructure, Texture, and Mechanical Properties of FeCrCuMnNi Multiphase High Entropy Alloy During Recrystallization. Mater. Charact. 154, 253–263 (2019)

    CAS  Google Scholar 

  6. X.W. Qiu, and C.G. Liu, Microstructure and Properties of Al2CrFeCoCuTiNix High-Entropy Alloys Prepared by Laser Cladding. J. Alloys Compd. 553, 216–220 (2013)

    CAS  Google Scholar 

  7. H. Zhang, Y. Pan, and Y.Z. He, Synthesis and Characterization of FeCoNiCrCu High-Entropy Alloy Coating by Laser Cladding. Mater. Des. 32, 1910–1915 (2011)

    CAS  Google Scholar 

  8. Y.K. Lv, R.Y. Hu, Z.H. Yao, J. Chen, D.P. Xu, Y. Liu, and X.H. Fan, Cooling Rate Effect on Microstructure and Mechanical Properties of AlxCoCrFeNi High Entropy Alloys. Mater. Des. 132, 392–399 (2017)

    CAS  Google Scholar 

  9. E. Abbasi, and K. Dehghani, Effect of Nb-C Addition on the Microstructure and Mechanical Properties of CoCrFeMnNi High Entropy Alloys During Homogenisation. Mater. Sci. Eng. A 753, 224–231 (2019)

    CAS  Google Scholar 

  10. Z.M. Li, Interstitial Equiatomic CoCrFeMnNi High-Entropy Alloys: Carbon Content, Microstructure, and Compositional Homogeneity Effects on Deformation Behavior. Acta Mater. 164, 400–412 (2019)

    CAS  Google Scholar 

  11. L.J. Chen, K. Bobzin, Z. Zhou, L.D. Zhao, M. Öte, T. Königstein, Z. Tan, and D.Y. He, Wear Behavior of HVOF-Sprayed Al0.6TiCrFeCoNi High Entropy Alloy Coatings at Different Temperatures. Surf. Coat. Technol. 358, 215–222 (2019)

    CAS  Google Scholar 

  12. C.Y. Hsu, T.S. Sheu, J.W. Yeh, and S.K. Chen, Effect of Iron Content on Wear Behavior of AlCoCrFexMo0.5Ni High-Entropy Alloys. Wear 268, 653–659 (2010)

    CAS  Google Scholar 

  13. Y.J. Zhou, Y. Zhang, T.N. Kim, and G.L. Chen, Microstructure Characterizations and Strengthening Mechanism of Multi-principal Component AlCoCrFeNiTi0.5, Solid Solution Alloy with Excellent Mechanical Properties. Mater. Lett. 62, 2673–2676 (2008)

    CAS  Google Scholar 

  14. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong, Phase Evolution and Cavitation Erosion-Corrosion Behavior of FeCoCrAlNiTix High Entropy Alloy Coatings on 304 Stainless Steel by Laser Surface Alloying. J. Alloys Compd. 698, 761–770 (2017)

    CAS  Google Scholar 

  15. J. Liu, H. Liu, P.J. Chen, and J.B. Hao, Microstructural Characterization and Corrosion Behaviour of AlCoCrFeNiTix High-Entropy Alloy Coatings Fabricated by Laser Cladding. Surf. Coat. Technol. 361, 63–74 (2019)

    CAS  Google Scholar 

  16. S.Y. Jiang, Z.F. Lin, H.M. Xu, and Y.X. Sun, Studies on the microstructure and properties of AlxCoCrFeNiTi1x high entropy alloys. J. Alloys Compd. 741, 826–833 (2017)

    Google Scholar 

  17. C.T. Kwok, H.C. Man, F.T. Cheng, and K.H. Lo, Developments in Laser-Based Surface Engineering Processes: With Particular Reference to Protection Against Cavitation Erosion. Surf. Coat. Technol. 291, 189–204 (2016)

    CAS  Google Scholar 

  18. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, and D. Fabijanic, The Sliding Wear Behaviour of CoCrFeMnNi and AlxCoCrFeNi High Entropy Alloys at Elevated Temperatures. Wear 428, 32–44 (2019)

    Google Scholar 

  19. X.W. Qiu, Y.P. Zhang, and C.G. Liu, Effect of Ti Content on Structure and Properties of Al2CrFeNiCoCuTix High-Entropy Alloy Coatings. J. Alloys Compd. 585, 282–286 (2014)

    CAS  Google Scholar 

  20. A.A. Siddiqui, A.K. Dubey, and C.P. Paul, A Study of Metallurgy and Erosion in Laser Surface Alloying of AlxCu0.5FeNiTi High Entropy Alloy. Surf. Coat. Technol. 361, 27–34 (2019)

    CAS  Google Scholar 

  21. D. Vallauri, I.C. Atías Adrián, and A. Chrysanthou, TiC-TiB Composites: A Review of Phase Relationships, Processing and Properties. J. Eur. Ceram. Soc. 28, 1697–1713 (2008)

    CAS  Google Scholar 

  22. H. Zhang, Y. Zou, Z.D. Zou, and C.W. Shi, Effects of CeO2 on Microstructure and Corrosion Resistance of TiC-VC Reinforced Fe-Based Laser Cladding Layers. J. Rare Earths 32, 1096–1100 (2014)

    Google Scholar 

  23. S.T. Sun, H.G. Fu, X.L. Ping, X.Y. Guo, J. Lin, Y.P. Lei, W.B. Wu, and J.X. Zhou, Effect of CeO2 Addition on Microstructure and Mechanical Properties of in-situ (Ti, Nb)C/Ni Coating. Surf. Coat. Technol. 359, 300–313 (2019)

    CAS  Google Scholar 

  24. Y.N. Liu, R.L. Sun, W. Niu, T.G. Zhang, and Y.W. Lei, Effects of CeO2 on Microstructure and Properties of TiC/Ti2Ni Reinforced Ti-Based Laser Cladding Composite Coatings. Opt. Laser Eng. 120, 84–94 (2019)

    Google Scholar 

  25. T.K. Mishra, A. Kumar, S.K. Sinha, and B. Gupta, Wear Behavior and XRD Analysis of Reinforced Copper Matrix Composite Reinforced with Cerium Oxide (CeO2). Mater. Today: Proc. 5, 27786–27794 (2018)

    CAS  Google Scholar 

  26. S. Zhang, C.L. Wu, C.H. Zhang, M. Guan, and J.Z. Tan, Laser Surface Alloying of FeCoCrAlNi High-Entropy Alloy on 304 Stainless Steel to Enhance Corrosion and Cavitation Erosion Resistance. Opt. Laser Technol. 84, 23–31 (2016)

    CAS  Google Scholar 

  27. B. He, N.N. Zhang, D.Y. Lin, Y. Zhang, F.Y. Dong, and D.Y. Li, The Phase Evolution and Property of FeCoCrNiAlTix High-Entropy Alloying Coatings on Q253 Via Laser Cladding. Coatings 7, 157 (2017)

    Google Scholar 

  28. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties. Appl. Phys. Lett. 90, 1–3 (2007)

    Google Scholar 

  29. Q.C. Fan, B.S. Li, and Y. Zhang, Influence of Al and Cu Elements on the Microstructure and Properties of (FeCrNiCo)AlxCuy High-Entropy Alloys. J. Alloys Compd. 614, 203–210 (2014)

    CAS  Google Scholar 

  30. Q.C. Fan, B.S. Li, and Y. Zhang, The Microstructure and Properties of (FeCrNiCo)AlxCuy High-Entropy Alloys and their TiC-Reinforced Composites. Mater. Sci. Eng. A. 598, 244–250 (2014)

    CAS  Google Scholar 

  31. M. Zhang, X.H. Wang, K.L. Qu, and S.S. Liu, Effect of Rare Earth Oxide on Microstructure and High Temperature Oxidation Properties of Laser Cladding Coatings on 5CrNiMo Die Steel Substrate. Opt. Laser Technol. 119, 105597 (2019)

    Google Scholar 

  32. X.F. Li, Y.H. Feng, B. Liu, D.H. Yi, X.H. Yang, W.D. Zhang, G. Chen, Y. Liu, and P.K. Bai, Influence of NbC Particles on Microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by Laser Cladding. J. Alloys Compd. 788, 485–494 (2019)

    CAS  Google Scholar 

  33. C.L. Wang, Y. Gao, R. Wang, D.Q. Wei, M. Cai, and Y.K. Fu, Microstructure of Laser-Clad Ni60 Cladding Layers Added with Different Amounts of Rare-Earth Oxides on 6063 Al Alloys. J. Alloys Compd. 740, 1099–1107 (2018)

    CAS  Google Scholar 

  34. H. Ye, X.B. Zhang, Z.F. Xue, Y.H. Fan, and K. Chen, Effect of CeO2 on Microstructure and Properties of WC/Ni60 Coating by Laser Cladding. Adv. Mater. Res. 79, 795–798 (2009)

    Google Scholar 

  35. T. Chen, F. Wu, H.J. Wang, and D.F. Liu, Laser Cladding In-Situ Ti(C, N) Particles Reinforced Ni-Based Composite Coatings Modified with CeO2 Nanoparticles. Metals 8, 601 (2018)

    Google Scholar 

  36. L.M. Wang, Q. Lin, L.J. Yue, L. Liu, F. Guo, and F.M. Wang, Study of Application of Rare Earth Elements in Advanced Low Alloy Steels. J. Alloys Compd. 451, 534–537 (2008)

    CAS  Google Scholar 

  37. Y.K. Kim, J. Choe, and K.A. Lee, Selective Laser Melted Equiatomic CoCrFeMnNi High-Entropy Alloy: Microstructure, Anisotropic Mechanical Response, and Multiple Strengthening Mechanism. J. Alloys Compd. 805, 680–691 (2019)

    CAS  Google Scholar 

  38. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, Thermal Process Maps for Predicting Solidification Microstructure in Laser Fabrication of Thin-Wall Structures. J. Mat. Process. Technol. 178, 135–142 (2006)

    CAS  Google Scholar 

  39. J.X. Hou, X.H. Shi, J.W. Qiao, Y. Zhang, P.K. Liaw, and Y.C. Wu, Ultrafine-Grained Dual Phase Al0.45CoCrFeNi High-Entropy Alloys. Mater. Des. 180, 107910 (2019)

    Google Scholar 

  40. J.N. Li, C.Z. Chen, D.G. Wang, and W. Li, Microstructures and Wear Properties of YPSZ/CeO2 Reinforced Composites Deposited by Laser Cladding. Compos. Part B 43, 896–901 (2012)

    Google Scholar 

  41. D.G. Wang, C.Z. Chen, J. Ma, and T.Q. Lei, Microstructure of Yttric Calcium Phosphate Bioceramic Coatings Synthesized by Laser Cladding. Appl. Surf. Sci. 253, 4016–4020 (2007)

    CAS  Google Scholar 

  42. B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, and R. Banerjee, Optimizing the Coupled Effects of Hall-Petch and Precipitation Strengthening in a Al0.3CoCrFeNi High Entropy Alloy. Mater. Des. 121, 254–260 (2017)

    CAS  Google Scholar 

  43. H.Y. Yasuda, H. Miyamoto, K. Cho, and T. Nagase, Formation of Ultrafine-Grained Microstructure in Al0.3CoCrFeNi High Entropy Alloys with Grain Boundary Precipitates. Mater. Lett. 199, 120–123 (2017)

    CAS  Google Scholar 

  44. N. Kikuchi, M. Kitagawa, A. Sato, E. Kusano, H. Nanto, and A. Kinbara, Elastic and Plastic Energies in Sputtered Multilayered Ti-TiN Films Estimated by Nanoindentation. Surf. Coat. Technol. 126, 131–135 (2000)

    CAS  Google Scholar 

  45. J. Musil, F. Kunc, H. Zeman, and H. Poláková, Relationships Between Hardness, Young’s Modulus and Elastic Recovery in Hard Nanocomposite Coatings. Surf. Coat. Technol. 154, 304–313 (2002)

    CAS  Google Scholar 

  46. P.F. Zhou, D.H. Xiao, G. Li, and M. Song, Nanoindentation Creep Behavior of CoCrFeNiMn High-Entropy Alloy under Different High-Pressure Torsion Deformations. J. Mater. Eng. Perform. 28, 2620–2629 (2009)

    Google Scholar 

  47. J.B. Cheng, D. Liu, X.B. Liang, and Y.X. Chen, Evolution of Microstructure and Mechanical Properties of in situ Synthesized TiC-TiB2/CoCrCuFeNi High Entropy Alloy Coatings. Surf. Coat. Technol. 281, 109–116 (2015)

    CAS  Google Scholar 

  48. H. Zhang, C.H. Zhang, Q. Wang, C.L. Wu, S. Zhang, J. Chen, and A.O. Abdullah, Effect of Ni Content on Stainless Steel Fabricated by Laser Melting Deposition. Opt. Laser Technol. 101, 363–371 (2018)

    CAS  Google Scholar 

  49. L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of Temperature on the Tribological Behavior of Al0.25CoCrFeNi High-Entropy Alloy. J. Mater. Sci. Technol. 35, 917–925 (2019)

    Google Scholar 

  50. H.J. Wang, T. Chen, W.L. Cong, and D.F. Liu, Laser Cladding of Ti-Based Ceramic Coatings on Ti6Al4V Alloy: Effects of CeO2 Nanoparticles Additive on Wear Performance. Coatings 9, 109 (2019)

    Google Scholar 

  51. M.Y. Seok, I.C. Choi, J. Moon, S. Kim, U. Ramamurty, and J.I. Jang, Estimation of the Hall-Petch Strengthening Coefficient of Steels Through Nanoindentation. Scripta Mater. 87, 49–52 (2014)

    CAS  Google Scholar 

  52. X. Li, C.H. Zhang, S. Zhang, C.L. Wu, J.B. Zhang, and A.O. Abdullah, Design, Preparation, Microstructure and Properties of Novel Wear-Resistant Stainless Steel-Base Composites Using Laser Melting Deposition. Vaccum 165, 139–147 (2019)

    CAS  Google Scholar 

  53. S. Zhang, C.L. Wu, J.Z. Yi, and C.H. Zhang, Synthesis and Characterization of FeCoCrAlCu High-Entropy Alloy Coating by Laser Surface Alloying. Surf. Coat. Technol. 262, 64–69 (2015)

    CAS  Google Scholar 

  54. H. Liu, J. Liu, P.J. Chen, and H.F. Yang, Microstructure and High Temperature Wear Behaviour of in-situ TiC Reinforced AlCoCrFeNi-Based High-Entropy Alloy Composite Coatings Fabricated by Laser Cladding. Opt. Laser Technol. 118, 140–150 (2019)

    CAS  Google Scholar 

  55. X.L. Ji, H. Alavi, S.P. Harimkar, and Y.T. Zhang, Sliding Wear of Spark Plasma Sintered CrFeCoNiCu High-Entropy Alloy Coatings: Effect of Aluminum Addition. J. Mater. Eng. Perform. 27, 5815–5822 (2018)

    CAS  Google Scholar 

  56. C. Huang, Y.Z. Zhang, R. Vilar, and J.Y. Shen, Dry Sliding Wear Behavior of Laser clad TiVCrAlSi High Entropy alloy Coatings on Ti-6Al-4V Substrate. Mater Des. 41, 338–343 (2012)

    CAS  Google Scholar 

  57. L.B. Wang, M. Chen, H.B. Liu, C.H. Jiang, V. Ji, and F. Moreira, Optimisation of Microstructure and Corrosion Resistance of Ni-Ti Composite Coatings by the Addition of CeO2 Nanoparticles. Surf. Coat. Technol. 331, 196–205 (2017)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge to the financial support for this research from National Key Research and Development Program of China (No. 2016YFB1100204), Key Research Project from Science and Technology Commission of Liaoning Province (No. 2018106004) and Shenyang Science and Technology Funded Project (Nos. 19-109-1-03, Z18-5-012, 18-004-1-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P.F., Zhang, C.H., Wu, C.L. et al. Microstructure and Properties of CeO2-Modified FeCoCrAlNiTi High-Entropy Alloy Coatings by Laser Surface Alloying. J. of Materi Eng and Perform 29, 1346–1355 (2020). https://doi.org/10.1007/s11665-020-04621-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04621-3

Keywords

Navigation