Skip to main content
Log in

Light emitting diode (LED)-induced alteration of oxidative events during in vitro shoot organogenesis of Curculigo orchioides Gaertn.

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We propose that the alteration of oxidative events due to perturbation in steady-state level of reactive oxygen species (ROS), resultant of irradiation under lights of specific wavelength(s) generated by light-emitting diodes (LEDs), regulates shoot regeneration potential of Curculigo orchioides. The changes in the oxidative response induced by LEDs were studied, using red (630 nm), blue (470 nm) and their combination (1:1) as light sources, by estimating the changes in endogenous hydrogen peroxide (H2O2) content, the level of lipid peroxidation and the activities of antioxidative enzymes during shoot organogenesis. After irradiating for 28 days, cultures illuminated under blue (BL) LED displayed significant (p < 0.05) improvements in the percentage of shoot organogenesis and mean number of shoot buds per responding explants compared to other treatments including control (fluorescent light, 40 W, 300–700 nm). Red LED treatment was found to be inhibitory on shoot organogenesis. A detrimental influence of LED light radiation on shoot organogenesis and concomitant changes in the levels of ROS and antioxidative enzyme activities were observed. Acquisition of organogenic competence and the initiation of shoot buds under BL-LED appeared to be associated with the increased level of superoxide dismutase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Addy SK, Goodman RN (1972) Polyphenol oxidase and peroxidase in apple leaves inoculated with virulent or an avirulent strain for Ervinia amylovora. Ind Phytopathol 25:319–320

    Google Scholar 

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–125

    Article  CAS  PubMed  Google Scholar 

  • Bafna AR, Mishra SH (2005) In vitro antioxidant activity of methanol extract of rhizomes of Curculigo orchioides Gaertn. Ars Pharm 46:125–138

    Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. Ann Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Benson EE (2000) Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev Biol Plant 36:163–170

    Article  CAS  Google Scholar 

  • Blazquez S, Olmos E, Hernandez JA, Fernandez-Garcia N, Fernandez JA, Piqueras A (2009) Somatic embryogenesis in saffron (Crocus sativus L.) histological differentiation and implication of some components of the antioxidant enzymatic system. Plant Cell Tiss Org Cult 97:49–57

    Article  CAS  Google Scholar 

  • Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper under red light-emitting diodes with supplemental blue or far-red lighting. J Amer Soc Hort Sci 120:808–813

    CAS  Google Scholar 

  • Budiarto K (2010) Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Agrivita 32:234–240

    Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  CAS  PubMed  Google Scholar 

  • Devlin PF, Christie JM, Terry MJ (2007) Many hands make light work. J Exp Bot 58:3071–3077

    Article  CAS  PubMed  Google Scholar 

  • Dutta Gupta S (2011) Role of free radicals and antioxidants in in vitro morphogenesis. In: Dutta Gupta S (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 229–247

    Google Scholar 

  • Dutta Gupta S, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Dutta Gupta S, Datta S (2003) Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol Plant 47:179–183

    Article  Google Scholar 

  • Fankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13:203–239

    Article  CAS  PubMed  Google Scholar 

  • Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franck T, Kevers C, Gaspar T (1995) Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L. L. raised in vitro. Plant Growth Regul 16:253–256

    Article  CAS  Google Scholar 

  • Girotti AW (1990) Photodynamic lipid peroxidation in biological systems. Photochem Photobiol 51:497–509

    Article  CAS  PubMed  Google Scholar 

  • Hahn EJ, Kozai T, Paek KY (2000) Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets. J Plant Biol 43:247–250

    Article  Google Scholar 

  • Heath R, Packer L (1968) Photo peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Heo JW, Lee CW, Chakrabarty D, Paek KY (2002) Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). J Plant Growth Regul 38:225–230

    Article  CAS  Google Scholar 

  • Imin N, Nizamidin M, Daniher D (2005) Proteomic analysis of somatic embryogenesis in Medicago truncata explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HH, Goins GD, Wheeler RM, Sager JC (2004a) Green-light supplementation for enhanced growth under red-and blue-light emitting diodes. Sci Hort 39:1617–1622

    Google Scholar 

  • Kim SJ, Hahn EJ, Heo JW, Paek KY (2004b) Effects of LEDs on net photosynthetic rate, growth and leaf stomata of Chrysanthemum plantlets in vitro. Sci Hort 101:143–151

    Article  Google Scholar 

  • Kurilcik A, Canova MR, Dapkuniene S, Zilinskaite S, Kurilcik G, Tamulaitis G, Duchovskis P, Zukauskas A (2008) In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent Eur J Biol 3:161–167

    Google Scholar 

  • Lakshmi V, Pandey K, Puri A, Saxena RP, Saxena KC (2003) Immunostimulant principles from Curculigo orchioides. J Ethnopharmacol 89:181–184

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Li J, Li B, He T, Chun Z (2010) Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tiss Org Cult 105:329–335

    Article  Google Scholar 

  • Liu GW (2001) Chinese herbal medicine. HuaXia Publishing House, Bejing

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Menezes-Benavente L, Kernodle SP, Margis-Pinheiro M, Scandalios JG (2004) Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Rep 9:29–36

    Article  CAS  PubMed  Google Scholar 

  • Meratan AA, Ghaffari SM, Niknam V (2009) In vitro organogenesis and antioxidant enzymes activity in Acanthophyllum sordidum. Biol Planta 53:5–10

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mohr H (1964) The control of plant growth and development by light. Biol Rev 39:87–112

    Article  Google Scholar 

  • Moreira da Silva MH, Debergh PC (1997) The effect of light quality on the morphogenesis of in vitro cultures of Azorina vidalli (Wats) Feer. Plant Cell Tiss Org Cult 51:187–1993

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nhut DT, Hong LTA, Watanabe H, Goi M, Tanaka M (2002) Growth of banana plantlets cultured in vitro under red and blue light-emitting diode (LED) irradiation source. Acta Hort 575:117–124

    Article  Google Scholar 

  • Obert B, Benson EE, Millam S, Pretovb A, Bremner DH (2005) Moderation of morphogenetic and oxidative stress responses in flax in vitro cultures by hydroxynonenal and desferrioxamine. J Plant Physiol 162:537–547

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Yanagi T, Kondo S (1997) Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light. Acta Hort 435:149–157

    Article  Google Scholar 

  • Park C, Song P (2003) Structure and function of the phytochromes: light regulation of plant growth and development. J Photosci 10:157–164

    CAS  Google Scholar 

  • Poudel RP, Kataoka I, Mochioka R (2008) Effect of red-and blue-light emitting diodes on growth and morphogenesis of grapes. Plant Cell Tiss Org Cult 92:147–153

    Article  Google Scholar 

  • Rajeswari V, Paliwal K (2008) Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L.f. (Benth). Acta Physiol Plant 30:825–832

    Article  CAS  Google Scholar 

  • Samuolienė G, Brazaitytė A, Urbonavičiutė A, Šabajevienė G, Duchovskis P (2010) The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirb Agri 97:99–104

    Google Scholar 

  • Samuolienė G, Urbonavičiutė A, Brazaitytė A, Šabajevienė G, Sakalauskaitė J, Duchovskis P (2011) The impact of LED illumination on antioxidant properties of sprouted seeds. Cent Eur J Biol 6:68–74

    Google Scholar 

  • Sankhalkar S, Sharma PK (2002) Protection against photooxidative damage provided by enzymatic and non-enzymatic antioxidant system in sorghum seedlings. Indian J Exp Biol 40:1260–1268

    CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:1–8

    Google Scholar 

  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochem Pol 54:39–50

    Google Scholar 

  • Sysoeva MI, Markovskaya EF, Shibaeva TG (2010) Plant under continuous light: a Review. Plant Stress 4:5–17

    Google Scholar 

  • Szechynska-Hebda M, Skrzypek E, Dabrowska G, Wedzony M, Lammeren AV (2012) The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency. Acta Physiol Plant 34:547–560

    Article  CAS  Google Scholar 

  • Tandon M, Shukla YN (1995) Phytoconstituents of Asparagus adscendens, Chlorophytum arundinaceum and Curculigo orchioides: a review. Curr Res Med Aromat Plants 17:42–50

    Google Scholar 

  • Tian M, Gu Q, Zhu M (2003) The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci 165:701–707

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants & protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vijayanarayana K, Rodrigues RS, Chandrasekhar KS, Subrahmanyam EVS (2007) Evaluation of estrogenic activity of alcoholic extract of rhizomes of Curculigo orchioides. J Ethnopharmacol 114:241–245

    Article  CAS  PubMed  Google Scholar 

  • Wang ZH, Huang J, Ma XC, Li GY, Ma YP, Li N, Wang JH (2013) Phenolic glycosides from Curculigo orchioides Gaertn. Fitoterapia 86:64–69

    Article  CAS  PubMed  Google Scholar 

  • Wu MC, Hou CY, Jiang CM, Wang YT, Wang CY, Chen HH, Chan HM (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753–1758

    Article  CAS  Google Scholar 

  • Xu JP, Xu RS (1992a) Cycloartane type sapogenins and their glycoside from Curculigo orchioides. Phytochem 31:2455–2458

    Article  CAS  Google Scholar 

  • Xu JP, Xu RS (1992b) Phenyl glycosides from Curculigo orchioides. Acta Pharmacol Sin 27:353–357

    CAS  Google Scholar 

  • Xu JP, Xu RS, Li XY (1992) Four new cycloartane saponins from Curculigo orchioides. Planta Med 58:208–210

    Article  CAS  PubMed  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnhold-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electr J Biotech 13:1–9

    Article  Google Scholar 

  • Zhang SG, Han SY, Yang WH, Wei HL, Zhang M, Qi LW (2010) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tiss Org Cult 100:21–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dutta Gupta.

Additional information

Communicated by J. van Staden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta Gupta, S., Sahoo, T.K. Light emitting diode (LED)-induced alteration of oxidative events during in vitro shoot organogenesis of Curculigo orchioides Gaertn.. Acta Physiol Plant 37, 233 (2015). https://doi.org/10.1007/s11738-015-1990-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1990-9

Keywords

Navigation