Skip to main content
Log in

Introgression of bacterial wilt resistance from Solanum melongena to S . t uberosum through asymmetric protoplast fusion

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Bacterial wilt (BW) caused by Ralstonia solanacearum is an important disease of many plant species especially Solanaceae. To compensate for lack of BW resistance in cultivated potato, we fused UV-treated protoplasts of a resistant eggplant variety with protoplasts of a susceptible potato clone to obtain 32 somatic hybrids. Although asymmetric protoplast fusion has the potential to transfer traits from distant species, introgression frequency and preference of alien fragments remain obscure, as well as the genetic basis for control of a trait. In the present research, the genome components of 32 somatic hybrids were determined by parent-specific SSRs. Each hybrid had integrated from one to eight alien chromosome fragments, providing a foundation for selection of BW resistance transmitted from eggplant. When the selected eggplant sequences were aligned with potato genome sequence it showed a similarity of 46.7 %, suggesting a large genetic distance between these two species. The results also revealed that introgression of eggplant fragments is non-selective, which may allow any part of alien chromosomes to be integrated. Distribution of eggplant loci in individual hybrids suggested a possible relationship between markers emk03O04, emi04P17 and emd13E02a and BW resistance, which are potential loci that control target traits and therefore deserve further investigation. With genome-wide selection of parent-specific molecular markers and sequence alignment, the present research substantiated interspecific introgression of a trait lacking in potato. Moreover, an efficient strategy was established to estimate genomic components of the somatic hybrids, and to explore the candidate loci that associate with target traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

APR:

Adult plant resistance

BW:

Bacterial wilt

DI:

Disease index

DS:

Disease score

EPS:

Exopolysaccharide

LTR:

Long terminal repeats

NIL:

Near isogenic lines

QTL:

Quantitative trait locus

RDI:

Relative disease index

RSSC:

Ralstonia solanacearum species complex

SSR:

Simple sequence repeat

T2SS:

Type II secretion system

T3SS:

Type III secretion system

References

  • Álvarez B, Biosca EG, López MM (2010) On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 1. Formatex, Badajoz, pp 267–279

    Google Scholar 

  • Alzohairy AM, Sabir JSM, Gyulai G, Younis RAA, Jansen RK, Bahieldin A (2014) Environmental stress activation of plant long-terminal repeat retrotransposons. Funct Plant Biol 41:557–567

    Article  CAS  Google Scholar 

  • Angot A, Peeters N, Lechner E, Vailleau F, Baud C, Gentzbittel L, Sartorel E, Genschik P, Boucher C, Genin S (2006) Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc Natl Acad Sci USA 103:14620–14625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin S, Pohlman JD, Brown CR, Mojtahedi H, Santo GS, Douches DS, Helgeson JP (1993) Interspecific somatic hybridization between Solanum tuberosum L. And S. b ulbocastanum dun. as a means of transferring nematode resistance. Am Potato J 70:485–495

    Article  Google Scholar 

  • Champoiseau PG, Jones JB, Allen C (2009) Ralstonia solanacearum race 3 biovar 2 causes tropical losses and temperate znxieties. Plant Health Prog. doi:10.1094/PHP-2009-0313-01-RV

    Google Scholar 

  • Chandel P, Tiwari JK, Ali N, Devi S, Sharma S, Sharma S, Luthra SK, Singh BP (2015) Interspecific potato somatic hybrids between Solanum tuberosum and S. c ardiophyllum, potential sources of late blight resistance breeding. Plant Cell Tissue Organ Cult 123:579–589

    Article  Google Scholar 

  • Chen L, Guo X, Xie C, He L, Cai X, Tian L, Song B, Liu J (2013) Nuclear and cytoplasmic genome components of Solanum tuberosum + S. c hacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theor Appl Genet 126:1861–1872

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Xia G, Quan T, Xiang F, Jin Y, Chen H (2004) Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci 167:773–779

    Article  CAS  Google Scholar 

  • Daunay MC, Chaput MH, Sihachakr D, Allot M, Vedel F, Ducreux G (1993) Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theor Appl Genet 85:841–850

    CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulières F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elphinstone JG (1996) Survival and possibilities for extinction of Pseudomonas solanacearum (Smith) Smith in cool climates. Potato Res 39:403–410

    Article  Google Scholar 

  • Fan J, Liu Y, Li Y, Zhou J (2014) Evaluation of tobacco seedling resistance to bacterial wilt and comparison of resistance evaluation system. J Yunnan Agric Univ 29:487–493 (in Chinese)

    Google Scholar 

  • Fehér A, Preiszner Z, Litkey Z, Csanadi G, Dudits D (1992) Characterization of chromosome instability interspecific somatic hybrids obtained by X-ray fusion between potato (Solanum tuberosum L.) and S. b revidens Phil. Theor Appl Genet 84:880–890

    PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Fock I, Collonniera C, Luisettib J, Purwitoc A, Souvannavongd V, Vedele F et al (2001) Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiol Biochem 39:899–908

    Article  CAS  Google Scholar 

  • Gao G, Qu D, Lian Y, Jin L, Feng L (2000) Identification molecular markers linked with resistance to bacterial wilt (Ralstonia solanacearum) in diploid potato. Acta Hortic Sin 27(1):37–41

    Google Scholar 

  • Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3(5):181–187

    Article  Google Scholar 

  • Grandbastien MA (2014) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochem Biophys Acta 1849:1–14

    Google Scholar 

  • Hu Q, Andersen S, Dixelius C, Hansen L (2002) Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep 21:147–152

    Article  CAS  Google Scholar 

  • Iovene M, Aversano R, Savarese S, Caruso I, Di Matteo A, Cardi T et al (2012) Interspecific somatic hybrids between Solanum bulbocastanum and S. t uberosum and their haploidization for potato breeding. Biol Plant 56:1–8

    Article  Google Scholar 

  • Kim-Lee H, Moon JS, Hong YJ, Kim MS, Cho HM (2005) Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Am Potato J 82:129–137

    Article  Google Scholar 

  • Laferriere LT, Helgeson JP, Allen C (1999) Fertile Solanum tuberosum + S. c ommersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theor Appl Genet 98:1272–1278

    Article  Google Scholar 

  • Lebeau A, Daunay MC, Frary A et al (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154–165

    Article  CAS  PubMed  Google Scholar 

  • Lebeau A, Gouy M, Daunay MC et al (2013) Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor Appl Genet 126:143–158

    Article  CAS  PubMed  Google Scholar 

  • Li C, Cheng A, Wang M, Xia G (2014) Fertile introgression products generated via somatic hybridization between wheat and Thinopyrum intermedium. Plant Cell Rep 33:633–641

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Pang XM, Cheng YJ, Meng HJ, Deng X (2002) Molecular characterization of the nuclear and cytoplasmic genomes of intergeneric diploid plants from cell fusion between Microcitrus papuana and rough lemon. Plant Cell Rep 21:327–332

    Article  CAS  Google Scholar 

  • Maćkowska K, Jarosz A, Grzebelus E (2014) Plant regeneration from leaf-derived protoplasts within the Daucus genus: effect of different conditions in alginate embedding and phytosulfokine application. Plant Cell Tissue Organ Cult 117:241–252

    Article  Google Scholar 

  • Miao L, Shou S, Cai J, Jiang F, Zhu Z, Li H (2009) Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol Biol Rep 36:479–486

    Article  CAS  PubMed  Google Scholar 

  • Milling A, Babujee L, Allen C (2011) Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS One 6:e15853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nazeem PA, Jose S, Sheeba NK, Madhavan S, Babya A, Kumarb PGS, Devib N (2001) Differential gene expression for bacterial wilt incidence in tomato (Solanum lycopersicum L.) revealed by cDNA-AFLP analysis. Physiol Mol Plant Pathol 76:197–203

    Article  Google Scholar 

  • Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H (2003) Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet 106:765–770

    CAS  PubMed  Google Scholar 

  • Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153

    Article  PubMed  Google Scholar 

  • Oberwalder B, Ruoß B, Schilde-Rentschler L, Hemleben V, Ninnemann H (1997) Asymmetric protoplast fusion between wild and cultivated species of potato (Solanum ssp.)—detection asymmetric hybrids and genome elimination. Theor Appl Genet 94:1104–1112

    Article  CAS  Google Scholar 

  • Oberwalder B, Schilde-Rentschler L, Ruoß B, Wittemann S, Ninnemann H (1998) Asymmetric protoplast fusions between wild species and breeding lines of potato: effect of recipients and genome stability. Theor Appl Genet 97:1347–1354

    Article  Google Scholar 

  • Olsson K (1976) Experience of brown rot caused by Pseudomonas solanacearum (Smith) in Sweden. EPPO Bull 6:199–207

    Article  Google Scholar 

  • Puite K, Schaart J (1993) Nuclear genomic composition of asymmetric fusion products between irradiated transgenic Solanum brevidens and S. tuberosum: limited elimination of donor chromosomes and polyploidization of recipient genome. Theor Appl Genet 86:237–244

    CAS  PubMed  Google Scholar 

  • Rakosy-Tican E, Thieme R, Nachtigall M, Molnar I, Denes T (2015) The recipient potato cultivar influences the genetic makeup of the somatic hybrids between five potato cultivars and one cloned accession of sexually incompatible species Solanum bulbocastanum Dun. Plant Cell Tissue Organ Cult 122:395–407

    Article  CAS  Google Scholar 

  • Rotino GL, Mennella G, Fusari F, Vitelli G, Tacconi MG, D’Alessandro A, Acciarri N (2001) Towards introgression of resistance to Fusarium oxysporum f. sp. melongenae from Solanum integrifolium into eggplant. Antalya Turk XI:303–307

    Google Scholar 

  • Rotino GL, Sala T, Toppino L (2014) Alien gene transfer in crop plants, vol 2. Springer, New York, pp 381–409

  • Sagar V, Jeevalatha A, Mian S, Chakrabarti SK, Gurjar MS et al (2013) Potato bacterial wilt in India caused by strains of phylotype I, II and IV of Ralstonia solanacearum. Eur J Plant Pathol 138:51–65

    Article  Google Scholar 

  • Sha AH, Lin XH, Huang JB, Zhang DP (2005) Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genom 273:484–490

    Article  CAS  Google Scholar 

  • Thakur PP, Mathew D, Nazeem PA, Abida PS, Indira P, Girija D, Shylaja MR, Valsala PA (2014) Identification of allele specific AFLP markers linked with bacterial wilt [Ralstonia solanacearum (Smith) Yabuuchi et al.] resistance in hot peppers (Capsicum annuum L.). Physiol Mol Plant Pathol 87:19–24

    Article  CAS  Google Scholar 

  • Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet 116:691–700

    Article  CAS  PubMed  Google Scholar 

  • Valkonen JPT, Xu Y-S, Pulli S, Pehu E, Rokka V-M (1994) Transfer of resistance to potato leafroll virus, potato virus Y and potato virus X from Solarium brevidens to S. t uberosum through symmetric and designed asymmetric somatic hybridisation. Ann Appl Biol 124:351–362

    Article  Google Scholar 

  • Vasse J, Genin S, Frey P, Boucher C, Brito B (2000) The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Mol Plant Microbe Interact 13:259–267

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR (1996) Plant retrotransposons: turned on by stress. Curr Biol 6:959–961

    Article  CAS  PubMed  Google Scholar 

  • Winstead NN, Kelman A (1952) Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology 42:628–634

    Google Scholar 

  • Wu S, Fang S, Pan J, Lin H, Chen S, Chen Y, Gu G (2004) Screening and evaluation of tobacco germplasm resistant to Ralstonia solanacearum. Acta Tabacaria Sinica 10:22–24 (English abstract)

    Google Scholar 

  • Xu C, Xia G, Zhi D, Xiang F, Chen H (2003) Integration of maize nuclear and mitochondrial DNA into the wheat genome through somatic hybridization. Plant Sci 165:1001–1008

    Article  CAS  Google Scholar 

  • Xu X, Hu Z, Li J, Liu J, Deng X (2007) Asymmetric somatic hybridization between UV-irradiated Citrus unshiu and C. s inensis: regeneration and characterization of hybrid shoots. Plant Cell Rep 26:1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, Zhang XL, Jin SX, Fu LL, Wang LG (2007) Production and characterization of asymmetric hybrids between upland cotton Coker 201 (Gossypium hirsutum) and wild cotton (G. k lozschianum Anderss). Plant Cell Tissue Organ Cult 89:225–235

    Article  Google Scholar 

  • Yu Y (2013) Germplasm creation via protoplast fusion between potato and eggplant. Ph.D. dissertation, Huazhong Agricultural University, China

  • Yu Y, Ye W, He L, Cai X, Liu T, Liu J (2013) Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids. Plant Cell Rep 32:1687–1701

    Article  CAS  PubMed  Google Scholar 

  • Zhi Y, Li H, Zhang H, Gang G (2014) Identification and utility of sequence related amplified polymorphism (SRAP) markers linked to bacterial wilt resistance genes in potato. Afr J Biotechnol 13:1314–1322

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the China Agriculture Research System [CARS-10-P06], The Ministry of Education of the People’s Republic of China (CN) (IRT13065) and Special Fund for Agro-scientific Research in the Public Interest (201303007).

Author contributions

J L, C X and X C designed and supervised the study; T L, Y Y and W T performed the experiments; T L and C X wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2016_958_MOESM1_ESM.doc

The growth habit, flower characteristic of the fusion parents and somatic hybrids a, d, g, j, l, m Plant architecture of the fusion parents and somatic hybrids; b, e, h, k Flower morphology of the fusion parents and somatic hybrids; c, f, i Tuber shape of the potato parent and somatic hybrids. The octoploid and mixoploid did not form flowers and tubers. a, b, c Potato parent 8# (tetraploid); d, e, f Hybrid 10-5 (tetraploid); g, h, i Hybrid 18-3 (tetraploid); j, k Eggplant parent 508.1 (diploid); l Hybrid 24-3 (octoploid); m Hybrid 6-1 (mixoploid) (doc 9605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Yu, Y., Cai, X. et al. Introgression of bacterial wilt resistance from Solanum melongena to S . t uberosum through asymmetric protoplast fusion. Plant Cell Tiss Organ Cult 125, 433–443 (2016). https://doi.org/10.1007/s11240-016-0958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0958-9

Keywords

Navigation