Skip to main content
Log in

Fertile introgression products generated via somatic hybridization between wheat and Thinopyrum intermedium

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Fertile hybrids were produced with genetic material transferred from Th. intermedium into a wheat background and supply a source of genetic variation to wheat improvement.

Abstract

Both symmetric and asymmetric somatic hybrids have been obtained from the combination of wheatgrass (Thinopyrum intermedium) and bread wheat (Triticum aestivum). Two wheat protoplast populations, one derived from embryogenic calli and the other from a non-regenerable, rapidly dividing cell line, were fused with Th. intermedium protoplasts which had been (or not been) pre-irradiated with UV. Among the 124 regenerated calli, 64 could be categorized as being of hybrid origin on the basis of plant morphology, peroxidase isozyme, RAPD DNA profiling and karyological analysis. Numerous green plantlets were regenerated from 13 calli recovered from either the symmetric hybrid (no UV pre-treatment) or the asymmetric one (30 s UV irradiation). One of these hybrid plants proved to be vigorous and self-fertile. The regenerants were all closer in phenotype to wheat than to Th. intermedium. Genomic in situ hybridization analysis showed that the chromosomes in the hybrids were largely intact wheat ones, although a few Th. intermedium chromosome fragments had been incorporated within them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayala-Navarrete L, Tourton E, Mechanicos AA, Larkin PJ (2009) Comparison of Thinopyrum intermedium derivatives carrying barley yellow dwarf virus resistance in wheat. Genome 52(6):537–546

    Article  PubMed  CAS  Google Scholar 

  • Bauer-Weston B, Keller W, Webb J, Gleddie S (1993) Production and characterization of asymmetric somatic hybrids between Arabidopsis thaliana and Brassica napus. Theor Appl Genet 86(2–3):150–158

    PubMed  CAS  Google Scholar 

  • Brown JK (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5(4):339–344

    Article  PubMed  CAS  Google Scholar 

  • Chen XL, Xia GM, Chen HM (2004) Nuclear and cytoplasmic genome analysis of somatic hybrid of Triticum aestivum L. and Leymus chinensis (Trin.) Tzvel. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30(4):379–386

    PubMed  CAS  Google Scholar 

  • Cheng AX, Xia GM (2004) Somatic hybridisation between common wheat and Italian ryegrass. Plant Sci 166:1219–1226

    Article  CAS  Google Scholar 

  • Cheng AX, Xia GM, Zhi DY, Chen HM (2004) Intermediate fertile Triticum aestivum (+) Agropyron elongatum somatic hybrids are generated by low doses of UV irradiation. Cell Res 14(1):86–91

    Article  PubMed  CAS  Google Scholar 

  • Cui HF, Yu ZY, Deng JY, Gao X, Sun Y, Xia GM (2009) Introgression of bread wheat chromatin into tall wheatgrass via somatic hybridization. Planta 229(2):323–330

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Dudits D, Maroy E, Praznovszky T, Olah Z, Gyorgyey J, Cella R (1987) Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: regeneration of fertile plants 84(23):8434–8438

    CAS  Google Scholar 

  • Eeckhaut T, Lakshmanan PS, Deryckere D, van Bockstaele E, van Huylenbroeck J (2013) Progress in plant protoplast research. Planta. doi:10.1007/s00425-00013-01936-00427

    PubMed  Google Scholar 

  • Fahleson J, Glimelius K (1999) Protoplast fusion for symmetric somatic hybrid production in Brassicaceae. Methods Mol Biol 111:195–209

    PubMed  CAS  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147(3):1381–1387

    PubMed Central  PubMed  CAS  Google Scholar 

  • Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet 86(2–3):141–149

    PubMed  CAS  Google Scholar 

  • Gamborg OL, Holl FB (1977) Plant protoplast fusion and hybridization. Basic Life Sci 9:299–316

    PubMed  CAS  Google Scholar 

  • Georgieva M, Sepsi A, Tyankova N, Molnar-Lang M (2011) Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids. J Appl Genet 52(3):269–277

    Article  PubMed  Google Scholar 

  • Hall RD, Rouwendal GJ, Krens FA (1992) Asymmetric somatic cell hybridization in plants. I. The early effects of (sub)lethal doses of UV and gamma radiation on the cell physiology and DNA integrity of cultured sugarbeet (Beta vulgaris L.) protoplasts. Mol Gen Genet 234(2):306–314

    Article  PubMed  CAS  Google Scholar 

  • Hohmann U, Busch W, Badaeva K, Friebe B, Gill BS (1996) Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome 39(2):336–347

    Article  PubMed  CAS  Google Scholar 

  • Hu NS, Wan XG (1985) Application of isozyme technique. Hunan Science and Technology Press, Changsha, China, pp 74–76

    Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160(4):1651–1659

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1997) Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Theor Appl Genet 94(2):221–226

    Article  Google Scholar 

  • Law CN (1993) Wheat genetics–today and tomorrow. In: Li ZS, Xiu ZY (eds) Proceedings of the 8th International Wheat Genetics Symposium, China Scientech Press, Beijing, pp 3–10

  • Li H, Wang X (2009) Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics 36(9):557–565

    Article  PubMed  CAS  Google Scholar 

  • Li C, Xia G, Xiang F, Zhou C, Cheng A (2004) Regeneration of asymmetric somatic hybrid plants from the fusion of two types of wheat with Russian wildrye. Plant Cell Rep 23(7):461–467

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhao S, Chen F, Xia G (2007) Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum. BMC Evol Biol 7:76

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu C, Li S, Wang M, Xia G (2012) A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. Plant Mol Biol 78(1–2):159–169

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Plant Physiol 15(3):473–497

    Article  CAS  Google Scholar 

  • Nakanoa M, Nomizub T, Mizunashia K, Suzukia M, Moria S, Kuwayamaa S, Hayashia M, Umeharaa H, Okaa E, Kobayashia H, Asanoa M, Sugawaraa S, Takagia H, Saitoc S, Nakatad M, Godod T, Haraa Y, Amanoa J (2006) Somaclonal variation in Tricyrtis hirta plants regenerated from 1-year-old embryogenic callus cultures. Sci Hortic 110(4):366–371

    Article  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33(4):670–685

    Article  PubMed  CAS  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35(10):1799–1823

    Article  PubMed  Google Scholar 

  • Sears ER (1993) Use of radiation to transfer alien chromosome segments to wheat. Crop Sci 33:897–901

    Article  Google Scholar 

  • Shan L, Li C, Chen F, Zhao S, Xia G (2008) A Bowman–Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ 31(8):1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Xia G (2009) Progress of chromosome engineering mediated by asymmetric somatic hybridization. J Genet Genomics 36(9):547–556

    Article  PubMed  CAS  Google Scholar 

  • Xia GM, Chen HM (1996) Plant regeneration from intergeneric somatic hybridization between Triticum aestivum L. and Leymus chinensis (Trin.) Tzvel. Plant Sci 120:197–203

    Article  CAS  Google Scholar 

  • Xia G, Xiang F, Zhou A, Wang H, Chen H (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet 107(2):299–305

    Article  PubMed  CAS  Google Scholar 

  • Xiang FN, Xia GM, Chen HM (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum) and Avena sativa L. Sci China C Life Sci 46(3):243–252

    PubMed  CAS  Google Scholar 

  • Xiang FN, Xia GM, Zhi DY, Wang J, Nie H, Chen HM (2004) Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica. Genome 47(4):680–688

    Article  PubMed  CAS  Google Scholar 

  • Xiang FN, Wang J, Xu CH, Xia GM (2010) The chromosome content and genotype of two wheat cell lines and of their somatic fusion product with oat. Planta 231(5):1201–1210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu CH, Xia GM, Zhi DY, Xiang FN, Chen HM (2003) Integration of maize nuclear and mitochondrial DNA into the wheat genome through somatic hybridization. Plant Sci 165:1001–1008

    Article  CAS  Google Scholar 

  • Zhou A, Xia G, Chen H, Hu H (2001a) Comparative study of symmetric and asymmetric somatic hybridization between common wheat and Haynaldia villosa. Sci China C Life Sci 44(3):294–304

    Article  PubMed  CAS  Google Scholar 

  • Zhou A, Xia G, Zhang X, Chen H, Hu H (2001b) Analysis of chromosomal and organellar DNA of somatic hybrids between Triticum aestivum and Haynaldia villosa Schur. Mol Genet Genomics 265(3):387–393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 31270385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmin Xia.

Additional information

Communicated by K. Chong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Cheng, A., Wang, M. et al. Fertile introgression products generated via somatic hybridization between wheat and Thinopyrum intermedium . Plant Cell Rep 33, 633–641 (2014). https://doi.org/10.1007/s00299-013-1553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1553-8

Keywords

Navigation