Skip to main content

Advertisement

Log in

In vitro regeneration, somatic hybridization and genetic transformation studies: an appraisal on biotechnological interventions in grasses

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The grass family Poaceae is one of the largest groups of monocots comprising approximately 650–900 genera and 10,000 species. Grasses include plants with wider environmental adaptability sustaining extremes of cold, heat, drought, and dominant in its distribution on variety of landscapes world over. Conventional approaches have contributed substantially in the past for the genetic improvement of grasses. However, the necessity of improvement for quality traits, nutritional value and as biofuel source has sought biotechnological interventions in grasses. Regeneration of grasses is a prerequisite for genetic manipulation in vitro. Last one decade, has seen accumulation of large amount of literature in grass on in vitro regeneration. Further, against the background of the limitations for transferring polygenic traits coupled with prevalent innate sexual incompatibilities, somatic hybridization through protoplast fusion may be a possible option for gene transfer within grasses and from grasses to lead cereals. In addition, grasses gain additional importance by realizing novel nuclear- cytoplasm-genome combinations from somatic fusion products. There are no detailed recent reviews available depicting overall research progress with major emphasis on in vitro plant regeneration, somatic hybridization and genetic transformation in grasses. In the present review, attempts is made towards making a inclusive survey illustrating research findings on in vitro regeneration, somatic hybridization and genetic transformation studies covering last one decade. Mention of a few new and novel developments for grass genetic improvement using biotechnological approaches is discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguado-Santacruz GA, Cabrera-Ponce JL, Olalde-Portugal V, Sanchez-Gonzalez MAR, Marouez-Guzman J, Herrera-Estrella L (2001) Tissue culture and plant regeneration of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. Ex Steud. In Vitro Cell Dev Biol Plant 37:182–189

    Article  CAS  Google Scholar 

  • Aguado-Santacruz GA, Rascón-Cruz Q, Moreno-Gómez B, Guevara-González RG, Guevara-Olvera L, Jiménez-Bremont JF, Arévalo-Gallegos S, García-Moya E (2009) Genetic transformation of blue grama grass with the rolA gene from Agrobacterium rhizogenes: regeneration of transgenic plants involves a “hairy embryo” stage. In Vitro Cell Dev Biol Plant 45:681–692

    Article  Google Scholar 

  • Aswath CR, Kim SH, Mo SY, Kim DH (2005) Transgenic plants of creeping bent grass harboring the stress inducible gene, 9-cis-epoxycarotenoid dioxygenase, are highly tolerant to drought and NaCl stress. Plant Growth Regul 47:129–139

    Article  CAS  Google Scholar 

  • Bajaj S, Ran Y, Phillips J, Kularajathevan G, Pal S, Cohen D, Elborough K, Puthigae S (2006) A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Rep 25:651–659

    Article  CAS  PubMed  Google Scholar 

  • Barampuram S, Chung BY, Lee SS, An BC, Lee EM, Cho JY (2009) Development of an embryogenic callus induction method for centipede grass (Eremochloa ophiuroides Munro) and subsequent plant regeneration. In Vitro Cell Dev Biol Plant 45:155–161

    Article  Google Scholar 

  • Bhattacharjee B, Sane AP, Gupta HS (1999) Transfer of wild abortive cytoplasmic male sterility through protoplast fusion in rice. Mol Breed 5:319–327

    Article  Google Scholar 

  • Buanafina MM, Langdon T, Hauck B, Dalton S, Morris P (2008) Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinace). Plant Biotechnol J 6:264–280

  • Cabral GB, Carneiro VTC, Lacerda AL, do Valle CB, Martinelli AP, Dusi DMA (2011) Somatic embryogenesis and organogenesis in apomictic and sexual Brachiaria brizantha. Plant Cell Tissue Organ Cult 107:271–282

    Article  Google Scholar 

  • Cai Y, Xiang F, Zhi D, Liu H, Xia G (2007) Genotyping of somatic hybrids between Festuca arundinacea Schreb. and Triticum aestivum L. Plant Cell Rep 26:1809–1819

    Article  CAS  PubMed  Google Scholar 

  • Carloni E, Ribotta A, Colomba EL, Griffa S, Quiroga M, Tommasino E, Grunberg K (2014) Somatic embryogenesis from in vitro anther culture of apomictic buffel grass genotypes and analysis of regenerated plants using flow cytometry. Plant Cell Tissue Organ Cult 117:311–322

    Article  Google Scholar 

  • Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Genet 104:127–131

    Article  CAS  PubMed  Google Scholar 

  • Ceotto E (2009) Grasslands for bioenergy production: a review. In: Lichtfouse E, Navarrete M, Debaeke P, Veronique S, Alberola C (eds) Sustainable agriculture. Springer, New York, pp 141–151

    Chapter  Google Scholar 

  • Chai ML, Senthil KK, Kim DH (2004) Transgenic plants of colonial bentgrass from embryogenic callus via Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult 77:165–171

    Article  CAS  Google Scholar 

  • Chai M, Jia Y, Chen S, Gao Z, Wang H, Liu L, Wang P, Hou D (2011) Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella [L.] Merr. Plant Cell Tissue Org Cult 104:187–192

    Article  CAS  Google Scholar 

  • Chakbavarty T, Norcini JG, Aldrich JH, Kalmbacher RS (2001) Plant regeneration of creeping bluestem (Schizachyrium scoparium (Michx.) Nash var. Stoloniferum (Nash) J. Wipff) via somatic embryogenesis. In Vitro Cell Dev Biol Plant 37:550–554

    Article  Google Scholar 

  • Chen L, Auh CK, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA, Wang ZY (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437–449

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Xia GM, Quan TY, Xiang FN, Jin Y, Chen HM (2004a) Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci 167:773–779

    Article  CAS  Google Scholar 

  • Chen XL, Xia GM, Chen HM (2004b) Nuclear and cytoplasmic genome analysis of somatic hybrid of Triticum aestivum L. and Leymus chinensis (Trin.) Tzvel]. Sci China C Life Sci 30:379–386

    CAS  Google Scholar 

  • Chen X, Yang WQ, Sivamani E, Bruneau AH, Wang BH, Qu RD (2005) Selective elimination of perennial ryegrass by activation of a pro-herbicide through engineering E. coli argE gene. Mol Breed 15:339–347

    Article  CAS  Google Scholar 

  • Chen S, Chai M, Jia Y, Gao Z, Zhang L, Gu M, Lin W, Wang L (2012) In vitro selection of glyphosate-tolerant variants from long-term callus cultures of Zoysia matrella [L.] Merr. Plant Cell Tissue Organ Cult 111:199–207

    Article  CAS  Google Scholar 

  • Cheng A, Xia G (2004) Somatic hybridization between common wheat and Italian ryegrass. Plant Sci 166:1219–1226

    Article  CAS  Google Scholar 

  • Cheng AX, Xia GM, Zhi DY, Chen HM (2004) Intermediate fertile Triticum aestivum (+) Agropyron elongatum somatic hybrids are generated by low doses of UV irradiation. Cell Res 14:86–91

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Cui H, Xia G (2006) Construction of a primary RH panel of Italian ryegrass genome via UV-induced protoplast fusion. Plant Biol 8:673–679

    Article  CAS  PubMed  Google Scholar 

  • Cho MJ, Choi HW, Lemaux PG (2001) Transformed T0 orchardgrass (Dactylis glomerata L.) plants produced from highly regenerative tissues derived from mature seeds. Plant Cell Rep 20:318–324

    Article  CAS  Google Scholar 

  • Christiansen P, Andersen CH, Didion T, Folling M, Nielsen KK (2005) A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep 23:751–758

    Article  CAS  PubMed  Google Scholar 

  • Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture, Science Press, Beijing, pp 43–50

  • Chung JH, Kim DS (2012) Miscanthus as a potential bioenergy crop in East Asia. J Crop Sci Biotechnol 15:65–77

    Article  Google Scholar 

  • Cui H, Yu Z, Deng J, Gao X, Sun Y, Xia G (2009) Introgression of bread wheat chromatin into tall wheatgrass via somatic hybridization. Planta 229:323–330

    Article  CAS  PubMed  Google Scholar 

  • Dai WD, Bonos S, Guo Z, Meyer WA, Day PR, Belanger FC (2003) Expression of pokeweed antiviral proteins in creeping bentgrass. Plant Cell Rep 21:497–502

    CAS  PubMed  Google Scholar 

  • Dalton SJ, Bettany AJE, Bhat V, Gupta MG, Bailey K, Timms E, Morris P (2003) Genetic transformation of Dichanthium annulatum (Forssk)—an apomictic tropical forage grass. Plant Cell Rep 21:974–980

    Article  CAS  PubMed  Google Scholar 

  • Dhandapani M, Hong SB, Aswath CR, Kim DH (2008) Regeneration of zoysia grass (Zoysia matrella L. Merr.) cv. Konhee from young inflorescences and stem nodes. In Vitro Cell Dev Biol Plant 44:8–13

    Article  CAS  Google Scholar 

  • Dong S, Tredway LP, Shew HD, Wang GL, Sivamani E, Qu R (2007) Resistance of transgenic tall fescue to two major fungal diseases. Plant Sci 173:501–509

    Article  CAS  Google Scholar 

  • Ersahin ME, Gomec CY, Dereli RK, Arikan O, Ozturk I (2011) Biomethane production as an alternative bioenergy source from codigesters treating municipal sludge and organic fraction of municipal solid wastes. J Biomed Biotechnol 2011:1–8

    Article  CAS  Google Scholar 

  • Fu D, Tisseratb NA, Xiao Y, Settle D, Muthukrishnan S, Liang GH (2005) Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass. Plant Sci 168:671–680

    Article  CAS  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley hva1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep 26:467–477

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Jiang L, Folling M, Han L, Nielsen KK (2006) Generation of large numbers of transgenic Kentucky bluegrass (Poa pratensis L.) plants following biolistic gene transfer. Plant Cell Rep 25:19–25

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Long D, Lenk I, Nielsen KK (2008) Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Rep 27:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Liu J, Nielsen KK (2009) Agrobacterium-mediated transformation of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep 28:1431–1437

    Article  CAS  PubMed  Google Scholar 

  • Ge TM, Lin XH, Qin FL, Yu SW, Yu YJ (2006a) Protoplast electrofusion between common wheat (Triticum aestivum L.) and Italian ryegrass (Lolium multiflorum Lam.) and regeneration of mature cybrids. In Vitro Cell Dev Biol Plant 42:179–187

    Article  CAS  Google Scholar 

  • Ge Y, Norton T, Wang ZY (2006b) Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Rep 25:792–798

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Cheng X, Hopkins A, Wang ZY (2007) Generation of transgenic Lolium temulentum plants by Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 26:783–789

    Article  CAS  PubMed  Google Scholar 

  • Giri CC, Vijaya Laxmi G (2000) Production of transgenic rice with agronomically useful genes: an assessment. Biotechnol Adv 18:653–683

    Article  CAS  PubMed  Google Scholar 

  • Głowacka K, Jezowski S, Kaczmarek Z (2010) The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tissue Organ Cult 102:79–86

    Article  Google Scholar 

  • Gondo T, Tsuruta SI, Akashi R, Kawamura O, Hoffmann F (2005) Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J Plant Physiol 162:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Gondo T, Matsumoto J, Yamakawa K, Tsuruta SI, Ebina M, Akashi R (2007) Somatic embryogenesis and multiple-shoot formation from seed-derived shoot apical meristems of rhodesgrass (Chloris gayana Kunth). Grassl Sci 53:138–142

    Article  Google Scholar 

  • Grando MF, Franklin CI, Shatters RG Jr (2002) Optimizing embryogenic callus production and plant regeneration from ‘Tifton 9’ bahiagrass seed explants for genetic manipulation. Plant Cell Tissue Organ Cult 71:213–222

    Article  CAS  Google Scholar 

  • Gugsa L, Sarial AK, Lorz H, Kumlehn J (2006) Gynogenic plant regeneration from unpollinated flower explants of Eragrostis tef (Zuccagni) Trotter. Plant Cell Rep 25:1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Guo Y-D, Hisano H, Shimamoto Y, Yamada T (2009) Transformation of androgenic-derived Festulolium plants (Lolium perenne L. × Festuca pratensis Huds.) by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 96:219–227

    Article  CAS  Google Scholar 

  • Hammami R, Cuadrado A, Friero E, Jouve N, Soler C, González JM (2011) Callus induction and plant regeneration from immature embryos of Brachypodium distachyon with different chromosome numbers. Biol Plant 55:797–800

    Article  Google Scholar 

  • Han YJ, Kim YM, Lee JY, Kim SJ, Cho KC, Chandrasekhar T, Song PS, Woo YM, Kim JI (2009) Production of purple-colored creeping bentgrass using maize transcription factor genes Pl and Lc through Agrobacterium-mediated transformation. Plant Cell Rep 28:397–406

    Article  PubMed  CAS  Google Scholar 

  • Himuro Y, Gondo T, Yamakawa K, Akashi R (2006) Genetic transformation of bahiagrass (Paspalum notatum Flugge) by visually screening cells expressing green fluorescent protein. Grassl Sci 55:216–220

    Article  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Holley WD, Baker R (1963) Carnation Production. W.C. Brown, Dubuque, p 142

    Google Scholar 

  • Hu F, Zhang L, Wang X, Ding J, Wu D (2005a) Agrobacterium-mediated transformed transgenic triploid bermudagrass (Cynodon dactylon × C. transvaalensis) plants are highly resistant to the glufosinate herbicide Liberty. Plant Cell Tissue Organ Cult 83:13–19

    Article  CAS  Google Scholar 

  • Hu Y, Jia W, Wang J, Zhang Y, Yang L, Lin Z (2005b) Transgenic tall fescue containing the Agrobacterium tumefaciens ipt gene shows enhanced cold tolerance. Plant Cell Rep 23:705–709

    Article  CAS  PubMed  Google Scholar 

  • Hwang OJ, Cho MA, Han YJ, Kim YM, Lim SH, Kim DS, Hwang I, Kim JI (2014) Agrobacterium-mediated genetic transformation of Miscanthus sinensis. Plant Cell Tissue Organ Cult 117:51–63

    Article  CAS  Google Scholar 

  • Jayaraj J, Liang GH, Muthukrishnan S, Punja ZK (2008) Generation of low copy number and stably expressing transgenic creeping bentgrass plants using minimal gene cassette bombardment. Biol Plant 52:215–221

    Article  CAS  Google Scholar 

  • Jelodar NB, Blackhall NW, Hartman TPV, Brar DS, Khush G, Davey MR, Cocking EC, Powar JB (1999) Intergeneric somatic hybrids of rice [Oryza sativa L. (+) Porteresia coarctata (Rozb.) tateoka]. Theor Appl Genet 99:570–577

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Haung B (2000) Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Sci 40:1358–1362

    Article  Google Scholar 

  • Kawamukai M (2009) Biosynthesis and bioproduction of coenzyme Q10 by yeasts and other organisms. Biotechnol Appl Biochem 53:217–226

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Alam I, Lee KW, Sharmin SA, Kwak SS, Lee SY, Lee BH (2010) Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnol Lett 32:571–576

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Da K, Mei C (2012) An efficient system for high-quality large-scale micropropagation of Miscanthus × giganteus plants. In Vitro Cell Dev Biol Plant 48:613–619

    Article  Google Scholar 

  • King ZR, Bray AL, LaFayette PR, Parrott WA (2014) Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.). Plant Cell Rep 33:313–322

    Article  CAS  PubMed  Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1997) Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Theor Appl Genet 94:221–226

    Article  Google Scholar 

  • Kumar S, Bhat V (2012) High-frequency direct plant regeneration via multiple shoot induction in the apomictic forage grass Cenchrus ciliaris L. In Vitro Cell Dev Biol Plant 48:241–248

    Article  Google Scholar 

  • Lauzer D, Dallaire S, Vincent G (2000) In vitro propagation of reed grass by somatic embryogenesis. Plant Cell Tissue Organ Cult 60:229–234

    Article  Google Scholar 

  • Lee SH, Ahsana N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Choi GJ, Kim KY, Ji HC, Park HS, Yoon SH, Lee SH (2009) High frequency plant regeneration from mature seed derived callus of Italian ryegrass (Lolium multiflorum) cultivars. Afr J Biotechnol 8:6828–6833

    CAS  Google Scholar 

  • Lee KW, Choi GJ, Kim KY, Yoon SH, Ji HC, Park HS, Lim YC, Lee SH (2010) Genotypic variation of Agrobacterium-mediated transformation of Italian ryegrass. Electron J Biotechnol 13:1–10

    Article  Google Scholar 

  • Li L, Qu R (2004) Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.]. Plant Cell Rep 22:403–407

    Article  CAS  PubMed  Google Scholar 

  • Li CL, Xia GM (2004) Asymmetric somatic hybridization between mixed wheat and Psathyrostachys juncea. Sci China C Life Sci 20:610–614

    Google Scholar 

  • Li C, Xia G, Xiang F, Zhou C, Cheng A (2004a) Regeneration of asymmetric somatic hybrid plants from the fusion of two types of wheat with Russian wildrye. Plant Cell Rep 23:461–467

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Robson PRH, Bettany AJE, Donnison IS, Thomas H, Scott IM (2004b) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep 22:816–821

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li R, Fei S, Qu R (2005) Agrobacterium-mediated transformation of common bermudagrass (Cynodon dactylon). Plant Cell Tissue Organ Cult 83:223–229

    Article  Google Scholar 

  • Li RF, Wei JH, Wang HZ, He J, Sun ZY (2006) Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1. Plant Cell Tissue Organ Cult 85:297–305

    Article  CAS  Google Scholar 

  • Li D, Sun Q, Huang M, Zhang J, Bai S, Zheng L, Zhao J, Qiu D, Li L, Yang Z, You M, Liu G, Zhang Y, Zhang C, Li S (2007) Agrobacterium–mediated genetic transformation of Elymus breviaristatus with Pseudomonas pseudoalcaligenes insecticidal protein gene. Plant Cell Tissue Organ Cult 89:159–168

    Article  Google Scholar 

  • Li M, Li H, Hu X, Pan X, Wu G (2010a) An Agrobacterium tumefaciens mediated transformation system using callus of Zoysia tenuifolia Willd. ex Trin. Plant Cell Tissue Organ Cult 102:321–327

    Article  CAS  Google Scholar 

  • Li Z, Baldwin CM, Hu Q, Liu H, Luo H (2010b) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33:272–289

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cheng X, Liu J, Zeng H, Han L, Tang W (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol Rep 5:61–69

    Article  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirement for tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Liu B, Liu ZL, Li XW (1999) Production of a highly asymmetric somatic hybrid between rice and Zizania latifolia (Griseb): evidence for inter-genomic exchange. Theor Appl Genet 98:1099–1103

    Article  Google Scholar 

  • Liu GS, Liu JS, Qi DM, Chu CC, Li HJ (2004) Factors affecting plant regeneration from tissue cultures of Chinese leymus (Leymus chinensis). Plant Cell Tissue Organ Cult 76:175–178

    Article  CAS  Google Scholar 

  • Liu J, Xu X, Deng X (2005) Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Organ Cult 82:19–44

    Article  CAS  Google Scholar 

  • Liu P, Zhang ZX, Yuan JG, Xi JB, Du XL, Yang ZY (2006) Callus Induction and plant regeneration in eleven perennial ryegrass cultivars. Biotechnol Biotechnol Equip 20:30–37

    Article  Google Scholar 

  • Liu M, Yang J, Lu S, Guo Z, Lin X, Wu H (2008) Somatic embryogenesis and plant regeneration in centipedegrass (Eremochloa ophiuroides [Munro] Hack). In Vitro Cell Dev Biol Plant 44:100–104

    Article  CAS  Google Scholar 

  • Liu L, Fan X, Zhang J, Yan M, Bao M (2009) Long-term cultured callus and the effect factor of high-frequency plantlet regeneration and somatic embryogenesis maintenance in Zoysia japonica. In Vitro Cell Dev Biol Plant 45:673–680

    Article  CAS  Google Scholar 

  • Liu M, Lu S, Liu L, Tan J, Guo Z (2012) Agrobacterium-mediated transformation of centipedegrass (Eremochloa ophiuroides [Munro] Hack.). Plant Cell Tissue Organ Cult 109:557–563

    Article  CAS  Google Scholar 

  • Long D, Wu X, Yang Z, Lenk I, Nielsen KK, Gao C (2011) Comparison of three selectable marker genes for transformation of tall fescue (Festuca arundinacea Schreb.) plants by particle bombardment. In Vitro Cell Dev Biol Plant 47:658–666

    Article  CAS  Google Scholar 

  • Lu S, Wang Z, Peng X, Guo Z, Zhang G, Han L (2006) An efficient callus suspension culture system for triploid bermudagrass (Cynodon transvaalensis × C. dactylon) and somaclonal variations. Plant Cell Tissue Organ Cult 87:77–84

    Article  Google Scholar 

  • Luo H, Hu Q, Nelson K, Longo C, Kausch AP, Chandlee JM, Wipff JK, Fricker CR (2004) Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Rep 22:645–652

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Hu CG, Xu B, Yao JL (2013) Regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata. Appl Biochem Biotechnol 171:543–552

    Article  CAS  PubMed  Google Scholar 

  • Molinari L, Busti A, Calderini O, Arcioni S, Pupilli F (2003) Plant regeneration from callus of apomictic and sexual lines of Paspalum simplex and RFLP analysis of regenerated plants. Plant Cell Rep 21:1040–1046

    Article  CAS  PubMed  Google Scholar 

  • Mostageer A, Elshihy OM (2003) Establishment of a salt tolerant somatic hybrid through protoplast fusion between rice and ditch reed. Arab J Biotech 6:1–12

    Google Scholar 

  • Müller AJ, Grafe R (1978) Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol Gen Genet 161:67–76

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays for tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakamura T, Ishikawa M (2006) Transformation of suspension cultures of bromegrass (Bromus inermis) by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 84:293–299

    Article  Google Scholar 

  • Ncanana S, Brandt W, Lindsey G, Farrant J (2005) Development of plant regeneration and transformation protocols for the desiccation-sensitive weeping lovegrass Eragrostis curvula. Plant Cell Rep 24:335–340

    Article  CAS  PubMed  Google Scholar 

  • Neibaur I, Gallo M, Altpeter F (2008) The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz). In Vitro Cell Dev Biol Plant 44:480–486

    Article  CAS  Google Scholar 

  • Osuna P, Barrow JR (2004) Regeneration of black grama (Bouteloua eriopoda torr. torr) plants via somatic embryogenesis. In Vitro Cell Dev Biol Plant 40:299–302

    Article  CAS  Google Scholar 

  • Patel M, Dewey RE, Qu R (2013) Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell Tissue Organ Cult 114:19–29

    Article  CAS  Google Scholar 

  • Petrovska N, Wu X, Donato R, Wang Z, Ong EK, Jones E, Forster J, Emmerling M, Sidoli A, O’Hehir R, Spangenberg G (2004) Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens. Mol Breed 14:489–501

    Article  CAS  Google Scholar 

  • Praveena M, Giri CC (2012) Plant regeneration from immature inflorescence derived callus cultures of salt tolerant kallar grass (Leptochloa fusca L.). Physiol Mol Biol Plants 18:345–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramamoorthy R, Kumar PP (2012) A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.). Plant Cell Rep 31:1923–1931

    Article  CAS  PubMed  Google Scholar 

  • Ran Y, Patron N, Yu Q, Georges S, Mason J, Spangenberg G (2014) Agrobacterium-mediated transformation of Lolium rigidum Gaud. Plant Cell Tissue Organ Cult 118:67–75

    Article  CAS  Google Scholar 

  • Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV (2001) Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep 20:48–54

    Article  CAS  Google Scholar 

  • Sairam RV, Wilber C, Franklin J, Smith B, Bazil J, Hassel R, Whaling D, Frutiger K, Blakey CA, Vierling R, Goldman SL (2002) High frequency callus induction and plant regeneration in Tripsacum dactyloides (L.). In Vitro Cell Dev Biol Plant 38:435–440

    Article  Google Scholar 

  • Salehi H, Khosh-Khui M (2005) Effects of genotype and plant growth regulator on callus induction and plant regeneration in four important turfgrass genera: a comparative study. In Vitro Cell Dev Biol Plant 41:157–161

    Article  CAS  Google Scholar 

  • Salehi H, Seddighi Z, Kravchenko AN, Sticklen MB (2005) Expression of cry1Ac in ‘Arizona Common’ Common bermudagrass via Agrobacterium-mediated transformation and control of black cutworm. J Am Soc Hortic Sci 130:619–623

    CAS  Google Scholar 

  • Sandhu S, Alpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge). Plant Cell Rep 27:1755–1765

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Takamizo T (2006) Agrobacterium tumefaciens-mediated transformation of forage-type perennial ryegrass (Lolium perenne L.). Grassl Sci 52:95–98

    Article  CAS  Google Scholar 

  • Sato H, Takamizo T, Shimizu T, Kawai K, Kaku K (2009) Conferred resistance to an acetolactate synthase-inhibiting herbicide in transgenic tall fescue (Festuca arundinacea Schreb.). HortScience 44:1254–1257

    Google Scholar 

  • Schenk RV, Hildebrandt AC (1972) Medium and techniques for induction and growth monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA 105:464–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo MS, Takahara M, Ebina M, Takamizo T (2008) Evaluation of tissue culture response from mature seeds of Panicum spp. Grassl Sci 54:125–130

    Article  Google Scholar 

  • Seo MS, Takahara M, Takamizo T (2010) Optimization of culture conditions for plant regeneration of Panicum spp. through somatic embryogenesis. Grassl Sci 56:6–12

    Article  CAS  Google Scholar 

  • Seo MS, Takahashi S, Kadowaki KI, Kawamukai M, Takahara M, Takamizo T (2011) Expression of CoQ10-producing ddsA transgene by efficient Agrobacterium-mediated transformation in Panicum meyerianum. Plant Cell Tissue Organ Cult 107:325–332

    Article  CAS  Google Scholar 

  • Shu QY, Liu GS, Xu SX, Li XF, Li HJ (2005) Genetic transformation of Leymus chinensis with the PAT gene through microprojectile bombardment to improve resistance to the herbicide Basta. Plant Cell Rep 24:36–44

    Article  CAS  PubMed  Google Scholar 

  • Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  CAS  Google Scholar 

  • Song G, Walworth A, Hancock JF (2012) Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tissue Organ Cult 108:445–453

    Article  CAS  Google Scholar 

  • Sun YL, Hong SK (2010) Effects of plant growth regulators and l-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.). Plant Cell Tissue Organ Cult 100:317–328

    Article  CAS  Google Scholar 

  • Takahashi W, Fujimori M, Miura Y, Komatsu T, Nishizawa Y, Hibi T, Takamizo T (2005) Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Rep 23:811–818

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Toyama K, Bae CH, Kang JG, Lim YP, Adachi T, Riu KZ, Song PS, Lee HY (2003) Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol Cells 16:19–27

    CAS  PubMed  Google Scholar 

  • Unno H, Yamamoto S (2005) Introduction of exogenous substance into protoplasts of perennial ryegrass by electroporation. Grassl Sci 51:165–168

    Article  CAS  Google Scholar 

  • Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27:471–478

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Ge Y (2005a) Rapid and efficient production of transgenic bermudagrass and creeping bentgrass bypassing the callus formation phase. Funct Plant Biol 32:769–777

    Article  CAS  Google Scholar 

  • Wang ZY, Ge Y (2005b) Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). J Plant Physiol 162:103–113

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42:1–18

    Article  CAS  Google Scholar 

  • Wang Z, Hopkins A, Mian R (2001a) Forage and turf grass biotechnology. Crit Rev Plant Sci 20:573–619

    Article  CAS  Google Scholar 

  • Wang ZY, Ye XD, Nagel J, Potrykus I, Spangenberg G (2001b) Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants. Plant Cell Rep 20:213–219

    Article  CAS  Google Scholar 

  • Wang Y, Ruemmele BA, Chandlee JM, Sullivan WM, Knapp JE, Kausch AP (2002a) Embryogenic callus induction and plant regeneration media for bentgrasses and annual bluegrass. In Vitro Cell Dev Biol Plant 38:460–467

    Article  Google Scholar 

  • Wang Z, Lehmann D, Bell J, Hopkins A (2002b) Development of an efficient plant regeneration system for Russian wildrye (Psathyrostachys juncea). Plant Cell Rep 20:797–801

    Article  CAS  Google Scholar 

  • Wang ZY, Bell J, Hopkins A (2003) Establishment of a plant regeneration system for wheatgrasses (Thinopyrum, Agropyron and Pascopyrum). Plant Cell Tissue Organ Cult 73:265–273

    Article  CAS  Google Scholar 

  • Wang ZY, Bell J, Lehmann D (2004) Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells. Plant Cell Rep 22:903–909

    CAS  PubMed  Google Scholar 

  • Wang L, Li X, Chen S, Liu G (2009) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnol Lett 31:313–319

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J, Wang J, Li Z (2010) Exogenous H2O2 improves the chilling tolerance of manila grass and mascarenegrass by activating the antioxidative system. Plant Growth Regul 61:195–204

    Article  CAS  Google Scholar 

  • Warnke S (2003) Creeping bentgrass (Agrostis stolonifera L.). In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics, and breeding. Wiley, Hoboken, pp 175–185

    Google Scholar 

  • Wei Y, Guangmin X, Daying Z, Huimin C (2001) Transfer of salt tolerance from Aeleuropus littorulis sinensis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Sci 161:259–266

    Article  PubMed  Google Scholar 

  • Wu YY, Chen QJ, Chen M, Chen J, Wang XC (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73

    Article  CAS  Google Scholar 

  • Wu GT, Chen JQ, Hu ZH, Lang CX, Chen XY, Wang FL, Jin W, Xia YW (2006) Production of transgenic tall fescue plants with enhanced stress tolerances by Agrobacterium tumefaciens-mediated transformation. Agric Sci China 5:330–338

    Article  Google Scholar 

  • Wu JX, Zhang ZG, Zhang Q, Lang ZH, Sun XH (2012) Scarabaeid larvae- and herbicide-resistant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of cry8Ca2, cry8Ga and bar genes. J Integr Agric 11:53–61

    Article  CAS  Google Scholar 

  • Xi Y, Fu C, Ge Y, Nandakumar R, Hisano H, Bouton J, Wang ZY (2009) Agrobacterium-mediated transformation of switchgrass and inheritance of the transgenes. Bioenergy Res 2:275–283

    Article  Google Scholar 

  • Xia GM, Xiang FN, Zhou AF, Wang H, He SX, Chen HM (1999) Fertile hybrid plant regeneration from somatic hybridization between Triticum aestivum and Agropyron elongatum. Acta Bot Sin 41:349–352

    Google Scholar 

  • Xia G, Xiang F, Zhou A, Wang H, Chen H (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet 107:299–305

    Article  CAS  PubMed  Google Scholar 

  • Xiang FN, Xia GM, Zhou AF, Chen HM, Huang Y, Zhai XL (1999) Asymmetric somatic hybridization between wheat (Triticum aestivum) and Bromus inermis. Acta Bot Sin 41:458–462

    Google Scholar 

  • Xiang F, Xia G, Chen H (2003a) Effect of UV dosage on somatic hybridization between common wheat (Triticum aestivum L.) and Avena sativa L. Plant Sci 164:697–707

    Article  CAS  Google Scholar 

  • Xiang F, Xia G, Chen H (2003b) Asymmetric somatic hybridization between wheat (Triticum aestivum) and Avena sativa L. Sci China C Life Sci 46:243–252

    CAS  PubMed  Google Scholar 

  • Xiang F, Wang J, Xu C, Xia G (2010) The chromosome content and genotype of two wheat cell lines and of their somatic fusion product with oat. Planta 231:1201–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Schubert J, Altpeter F (2001) Dissection of RNA-mediated ryegrass mosaic virus resistance in fertile transgenic perennial ryegrass (Lolium perenne L.). Plant J 26:265–274

    Article  CAS  PubMed  Google Scholar 

  • Xu CH, Xia GM, Zhi DY, Xiang FN, Chen HM (2003) Integration of maize nuclear and mitochondrial DNA into the wheat genome through somatic hybridization. Plant Sci 165:1001–1008

    Article  CAS  Google Scholar 

  • Yadav CB, Jha P, Mahalakshmi C, Anjaiah V, Bhat V (2009) Somatic embryogenesis and regeneration of Cenchrus ciliaris genotypes from immature embryo explants. Biol Plant 53:603–609

    Article  CAS  Google Scholar 

  • Yan CQ, Quian KX, Yan QS, Zhang XQ, Xue GP, Huangfu WG, Wu YF, Zhao YZ, Xue ZY, Huang J, Xu GZ, Wu P (2004) Use of asymmetric somatic hybridization for transfer of the bacterial blight resistance trait from Oryza meyeriana L. to O. sativa L. ssp. Japonica. Plant Cell Rep 22:569–575

    Article  CAS  PubMed  Google Scholar 

  • Yang YG, Guo YM, Guo Y, Guo ZC, Lin JX (2003) Regeneration and large-scale propagation of Phragmites communis through somatic embryogenesis. Plant Cell Tissue Organ Cult 75:287–290

    Article  CAS  Google Scholar 

  • Ye XD, Wu XL, Zhao H, Frehner M, Nösberger J, Potrykus I, Spangenberg G (2001) Altered fructan accumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilis sacB gene. Plant Cell Rep 20:205–212

    Article  CAS  Google Scholar 

  • Zhang WJ, Dong JL, Liang BG, Jin YS, Wang T (2006) Highly efficient embryogenesis and plant regeneration of tall fescue (Festuca arundinacea Schreb.) from mature seed-derived calli. In Vitro Cell Dev Biol Plant 42:114–118

    Article  CAS  Google Scholar 

  • Zhang S, Hanna W, Ozias-Akins P (2007) Comparison of callus induction and plant regeneration from different explants in triploid and tetraploid turf-type bermudagrasses. Plant Cell Tissue Organ Cult 90:71–78

    Article  CAS  Google Scholar 

  • Zhang K, Wang J, Hu X, Yang A, Zhang J (2010) Agrobacterium-mediated transformation of shoot apices of Kentucky bluegrass (Poa pratensis L.) and production of transgenic plants carrying a betA gene. Plant Cell Tissue Organ Cult 102:135–143

    Article  CAS  Google Scholar 

  • Zhang QX, Sun Y, Hu HK, Chen B, Hong CT, Guo HP, Pan YH, Zheng BS (2012) Micropropagation and plant regeneration from embryogenic callus of Miscanthus sinensis. In Vitro Cell Dev Biol Plant 48:50–57

    Article  CAS  Google Scholar 

  • Zhao J, Zhi D, Xue Z, Liu H, Xia G (2007) Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. J Plant Physiol 164:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Hu H, Zhan H, Diao Y, Jin S, Zhou F, Hu Z (2013) Plant regeneration from the embryogenic calli of five major Miscanthus species, the non-food biomass crops. In Vitro Cell Dev Biol Plant 49:383–387

    Article  Google Scholar 

  • Zhi D, Xiang F, Chen X, Xia G, Chen H (2002) Production of plants from somatic hybridization between common wheat and maize (Zea mays L.). Sci China C Life Sci 37:80–83

    Google Scholar 

  • Zhou A, Xia G (2005) Introgression of the Haynaldia villosa genome into gamma-ray-induced asymmetric somatic hybrids of wheat. Plant Cell Rep 24:289–296

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Xia G, Chen H, Hu H (2001a) Comparative study of symmetric and asymmetric somatic hybridization between common wheat and Haynaldia villosa. Sci China C Life Sci 44:294–304

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Xia G, Zhang X, Chen H, Hu H (2001b) Analysis of chromosomal and organellar DNA of somatic hybrids between Triticum aestivum and Haynaldia villosa Schur. Mol Genet Genomics 265:387–393

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Hu Q, Li Z, Li D, Chen CF, Luo H (2011) Expression of a novel antimicrobial peptide penaeidin4-1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance. PLoS One 6:1–12

    Google Scholar 

  • Zong L, Ding LM, Xue X, Wang T (2010) Regeneration of green plants from seed-derived callus cultures of Poa. Afr J Biotechnol 9:3091–3098

    CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Department of Science and Technology (DST), New Delhi for financial support. Ms. M. Praveena thanks DST, New Delhi and DBT-OU-ISLARE for the award of Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Giri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, C.C., Praveena, M. In vitro regeneration, somatic hybridization and genetic transformation studies: an appraisal on biotechnological interventions in grasses. Plant Cell Tiss Organ Cult 120, 843–860 (2015). https://doi.org/10.1007/s11240-014-0653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0653-7

Keywords

Navigation