Skip to main content
Log in

Agrobacterium-mediated transformation of shoot apices of Kentucky bluegrass (Poa pratensis L.) and production of transgenic plants carrying a betA gene

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Apical meristems of multiple shoots produced from axenic seedlings of Kentucky bluegrass (Poa pratensis L.) were used for Agrobacterium tumefaciens-mediated transformation. Transformation parameters were optimized for concentration of bacterial cells, duration of infection, and vacuum infiltration. The highest transformation frequency (1.42%) was obtained by infection with Agrobacterium suspension of OD600 = 0.6 for 5 min, under a negative pressure of 0.5 × 105 Pa. After co-cultivation, the herbicide-resistant plants were rooted and transplanted into flowerpots. Transgenic plants were confirmed by polymerase chain reaction (PCR) assay and Southern blot analysis. Using this transformation system, the betA gene encoding choline dehydrogenase and mutant als gene encoding the enzyme acetolactate synthase were introduced into three Kentucky bluegrass cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CTAB:

Cetyltrimethyl ammonium bromide

BA:

6-benzyladenine

2,4-D :

2,4-dichlorophenoxyacetic acid

AS:

Acetosyringone

References

  • Akerberg E (1979) Apomictic and sexual seed formation in Poa pratensis L. Hereditas 25:359–371

    Article  Google Scholar 

  • Bashaw EC (1980) Apomixis and its application in crop improvement. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. Madison Press, Wisconsin, pp 455–633

    Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    CAS  PubMed  Google Scholar 

  • Boyd LA, Dale PJ (1986) Callus production and plant regeneration from mature embryos of Poa pratensis L. Plant Breed 97:246–254

    Article  CAS  Google Scholar 

  • Chai BF, Liang AH, Wang W, Hu W (2003) Agrobacterium-mediated transformation of Kentucky bluegrass. Acta Bot Sinica 45(8):966–973, in English with Chinese abstract

    Google Scholar 

  • Chen YQ, Lu LT, Deng W, Yang XY, McAvoy R, Zhao DG, Pei Y, Luo KM, Duan H, Smith W, Thammina C, Zheng XL, Ellis D, Li Y (2006) In vitro regeneration and Agrobacterium-mediated genetic transformation of Euonymus alatus. Plant Cell Rep 25:1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Costa MGC, Otoni WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradise (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep 21:365–373

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2007) Transgenic plants from shoot apical meristems of Vitis vinifera L. “Thompson Seedless” via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Gao CX, Jiang L, Folling M, Han LB, Nielsen KK (2006) Generation of large numbers of transgenic Kentucky bluegrass (Poa pratensis L.) plants following biolistic gene transfer. Plant Cell Rep 25:19–25

    Article  CAS  PubMed  Google Scholar 

  • Gao CX, Long DF, Lenk I, Nielsen KK (2008) Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Rep 27(10):1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Ge YX, Cheng XF, Hopkins A, Wang ZY (2007) Generation of transgenic Lolium temulentum plants by Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 26:783–789

    Article  CAS  PubMed  Google Scholar 

  • Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434

    Article  CAS  PubMed  Google Scholar 

  • Grazi F, Umaerus M, Åkerberg E (1961) Observations on the mode of reproduction and the embryology of Poa pratensis. Hereditas 47:489–541

    Article  Google Scholar 

  • Griffin JD, Dibble MS (1995) High-frequency plant regeneration from seed-derived callus cultures of Kentucky bluegrass (Poa pratensis L.). Plant Cell Rep 14:721–724

    Article  CAS  Google Scholar 

  • Griffin J, Zemetra R (1999) Genetic transformation of Kentucky bluegrass. In: Dibble MS, Gu SZ, Griffin JD (eds) Progress report: transgene expression in Kentucky bluegrass: GUS and BAR. In Agronomy Abstracts (p 98). ASA, Madison, Wisconsin

  • Gu XF, Meng H, Qi G, Zhang JR (2008) Agrobacterium-mediated transformation of the winter jujube (Zizyphus jujuba Mill.). Plant Cell Tiss Org Cult 94:23–32

    Article  CAS  Google Scholar 

  • Ha CD, Lemaux PG, Cho MJ (2001) Stable transformation of a recalcitrant Kentucky bluegrass (Poa pratensis L.) cultivar using mature seed-derived highly regenerative tissues. In Vitro Cell Dev Biol Plant 37(1):6–11

    Article  CAS  Google Scholar 

  • Hanna WW, Bashaw EC (1987) Apomixis: its identification and use in plant breeding. Crop Sci 27(6):1136–1139

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza saliva L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hu FR (2005) Optimization of Agrobacterium-mediated transformation of tall fescue (Festuca arundinacea Schreb.). Mol Plant Breed 3(3):375–380, in Chinese

    CAS  Google Scholar 

  • Hu XR, Yang AF, Zhang KW, Wang J, Zhang JR (2006) Optimization of in vitro multiple shoot clump induction and plantlet regeneration of Kentucky bluegrass (Poa pratensis). Plant Cell Tissue Organ Cult 84:89–98

    Article  Google Scholar 

  • Ke SQ, Lee CW (1996) Plant regeneration in Kentucky bluegrass (Poa pratensis L.) via coleoptile tissue cultures. Plant Cell Rep 15:882–887

    Article  CAS  Google Scholar 

  • Ke SQ, Lee CW, Cheng ZM (1996) Genetic transformation of Kentucky bluegrass with rolC gene. HortSci 31:616

    Google Scholar 

  • Kong Z, Zhao DG (2008) The combination of CHI and AFP genes introduced into ryegrass mediated by Agrobacterium. Mol Plant Breed 6(2):281–285, in Chinese

    CAS  Google Scholar 

  • Landfald B, Strøm AR (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165(3):849–855

    CAS  PubMed  Google Scholar 

  • Li ZN, Fang F, Liu GF, Bao MZ (2007) Stable Agrobacterium-mediated genetic transformation of London plane tree (Platanus acerifolia Willd.). Plant Cell Rep 26:641–650

    Article  CAS  PubMed  Google Scholar 

  • Liu HK, Yang C, Wei ZM (2004) Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Lv SL, Yin XY, Zhang KW, Zhang JR (2004) Agrobacterium-mediated transformation of shoot apex of cotton and production of transgenic plants carrying betA gene. High Tech Lett 14:20–25, in Chinese

    CAS  Google Scholar 

  • Ma ZH, Zhang YF, Xu CX, Chen WJ, Yin HH, Kuai BK (1999) Tissue culture and genetic transformation of Kentucky bluegrass (Poa pratensis) via microprojectile bombardment. J Fudan Univ (Natural Science) 38(5):540–544, in Chinese

    Google Scholar 

  • McDonnell RE, Conger BV (1984) Callus induction and plantlet formation from mature embryo explants of Kentucky bluegrass. Crop Sci 24:573–578

    Google Scholar 

  • Meyer W, Zhang G, Lu S, Chen S, Chen TA, Funk R (2000) Transformation of Kentucky bluegrass (Poa pratensis L.) with betaine aldehyde dehydrogenase gene for salt and drought tolerance. Annual Meeting Abstracts, American Society of Agronomy, Crop Science Society of America, Soil Science Society of American (ASA/CSSA/SSSA), Minneapolis, Minnesota, November 2000, p 167

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nielsen KA, Knudsen E (1993) Regeneration of green plants from embryogenic suspension cultures of Kentucky bluegrass (Poa pratensis L.). J Plant Physiol 141:589–595

    Google Scholar 

  • Nielsen KA, Larsen E, Knudsen E (1993) Regeneration of protoplast-derived green plants of Kentucky bluegrass (Poa pratensis L.). Plant Cell Rep 12:537–540

    Article  CAS  Google Scholar 

  • Pieper MA, Smith MAL (1988) A whole plant microculture selection system for Kentucky bluegrass. Crop Sci 28:611–614

    Article  Google Scholar 

  • Qian HF, Shaukat A, Hong L, Xu H (2006) Establishment of genetic transformation system via Agrobacterium in tall fescue cultivar. J For Res 17(3):238–242

    Article  CAS  Google Scholar 

  • Quan RD, Shang M, Zhang JR (2003) Optimization of transformation conditions in maize inbred line calluses via Agrobacterium tumefaciens. J Plant Physiol Mol Biol 29(3):245–250, in Chinese

    Google Scholar 

  • Saini R, Jaiwal PK (2005) Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures. Plant Cell Rep 24:164–171

    Article  CAS  PubMed  Google Scholar 

  • Sairam RV, Parani M, Franklin G, Lifeng Z, Smith B, MacDougall J, Wilber C, Sheikhi H, Kashikar N, Meeker K, Al-Abed D, Berry K, Vierling R, Goldman SL (2003) Shoot meristem: an ideal explant for Zea mays L. transformation. Genome 46:323–329

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125(1):180–188

    Article  CAS  PubMed  Google Scholar 

  • She JM, Zhang BL, Chen ZY, Ni WC (2003) A study on the technique of plant regeneration from mature seed embryo of Kentucky bluegrass in vitro. Acta Agrestia Sin 11(1):58–62, in Chinese

    Google Scholar 

  • She JM, Liang LF, Zhang BL, He XL, Chen ZY, Ni WC (2005) Acquirement of Bt transgenic plants by Agrobacterium tumefaciens in Kentucky bluegrass (Poa pratensis L.). Jiangsu J Agr Sci 21(2):102–105, in Chinese

    Google Scholar 

  • She JM, Zhang BL, Liang LF, He XL, Yao S, Chen ZY, Ni WC (2006) Acquirement of transgenic plants with glucose oxidase gene in Kentucky bluegrass (Poa pratensis L.). Jiangsu J Agr Sci 22(3):217–221, in Chinese

    Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons (review). Crop Sci 35(2):301–309

    Article  Google Scholar 

  • van der Valk P, Zaal MACM, Creemers-Molenaar J (1989) Somatic embryogenesis and plant regeneration in inflorescence and seed derived callus cultures of Poa pratensis L. (Kentucky bluegrass). Plant Cell Rep 7:644–647

    Google Scholar 

  • Wang ZY, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42:1–18

    Google Scholar 

  • Wang YL, Ye XG, Dong F, Qiao WH, Tao LL, Li XL, Xing XU (2007) Agrobacterium-mediated transformation of tall fescue and perennial ryegrass. China Biotech 27(1):22–27, in Chinese

    Google Scholar 

  • Wu GT, Chen JQ, Hu ZH, Lang CX, Chen XY, Wang FL, Jin W, Xia YW (2006) Production of transgenic tall fescue plants with enhanced stress tolerance by Agrobacterium tumefaciens-mediated transformation. Scientia Agri Sin 38(12):2395–2402, in Chinese

    Google Scholar 

  • Xin JN, Han LB, Liu J, Han XB (2006) Transformation of Kentucky bluegrasss (Poa pratensis L.) by particle bombardment. China Biotech 26(8):10–14, in Chinese

    CAS  Google Scholar 

  • Yang AF, Duan XG, Gu XF, Gao F, Zhang JR (2005) Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell Tissue Organ Cult 83:259–270

    Article  CAS  Google Scholar 

  • Yu CH, Huang S, Chen CX, Deng ZN, Ling P, Gmitter FG Jr (2002) Factors affecting Agrobacterium-mediated transformation and regeneration of sweet orange and citrange. Plant Cell Tissue Organ Cult 71:147–155

    Article  CAS  Google Scholar 

  • Zhang JR, Li XH, Quan RD, Zhang QW, Shang M, Yang AF, Li GS (2005) Method for creating transgenic receptor system of corn and application. China Patent 00110842.5, 29 October 2003

  • Zhao JS, Zhi DY, Xue ZY, Xia GM (2005) Research on Festuca arundinacea transformation mediated by Agrobacterium tumefaciens. Acta Genet Sin 32(6):579–585, in Chinese

    CAS  PubMed  Google Scholar 

  • Zimmerman TW, Scorza R (1996) Genetic transformation through the use of hyperhydric tobacco meristems. Mol Breed 2:73–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. L. B. Han at the Turfgrass Institute of Beijing Forestry University for providing the seeds of Kentucky bluegrass. This research was supported by the National Project for Transgenic Plant Research and Industrialization of China (2008ZX08005-4), the Cotton Improved Variety Project of Shandong Province (2009GG10009010), and the High-Tech Research and Development Program of China (2007AA091701). We would also like to thank International Science Editing for their assistance in the language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Wang, J., Hu, X. et al. Agrobacterium-mediated transformation of shoot apices of Kentucky bluegrass (Poa pratensis L.) and production of transgenic plants carrying a betA gene. Plant Cell Tiss Organ Cult 102, 135–143 (2010). https://doi.org/10.1007/s11240-010-9713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9713-9

Keywords

Navigation