Skip to main content
Log in

Effects of pH, MES, arabinogalactan-proteins on microspore cultures in white cabbage

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The objective of this study was to improve induction of embryogenesis in white cabbage (Brassica oleracea var. capitata) microspore cultures. The effect of NLN-13 liquid medium pH on isolated microspore embryogenesis was investigated in five white cabbage genotypes. Relatively high pH (6.2 or 6.4) was more effective on microspore embryogenesis in most of the white cabbage genotypes than the pH of 5.8, especially for inducing microspore-derived embryos in recalcitrant genotype ‘Zhonggan No. 8’. Based on this, 2—(N-Morpholino) ethanesulfonic acid (MES) and the arabinogalactan-protein from gum arabic were tested on four out of five genotypes to see if they could increase embryo yield in microspore cultures. Adding MES or gum arabic alone was effective for these four genotypes, but the frequency of embryos derived from microspores was still low. However, the combination of 10 mg l−1 gum arabic and 3 mM MES in NLN-13 at pH 6.4 significantly enhanced microspore embryogenesis efficiency (with embryo production of 4.57–222.97 embryos per bud), especially with recalcitrant genotype “Zhonggan No. 8” for which it was increased by about 35-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MES:

2—(N-Morpholino) ethanesulfonic acid

AGP:

Arabinogalactan-protein

DH:

Doubled haploid

PCD:

Programmed cell death

References

  • Abercrombie JM, Farnham MW, Rushing JW (2005) Genetic combining ability of glucoraphanin level and other horticultural traits of broccoli. Euphytica 143:145–151

    Article  CAS  Google Scholar 

  • Akiyama Y, Kato K (1981) An extracellular arabinogalactan-protein from Nicotiana tabacum. Phytochemistry 20:2507–2510

    Article  CAS  Google Scholar 

  • Anderson RL, Clarke AE, Jermyn MA, Knox RB, Stone BA (1977) A carbohydrate-binding arabinogalactan-protein from liquid suspension cultures of endosperm from Lolium multiflorum. Aust J Plant Physiol 4:143–158

    Article  CAS  Google Scholar 

  • Baldwin TC, McCann MC, Roberts K (1993) A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension-cultured cells of Daucus carota. Plant Physiol 103:115–123

    PubMed  CAS  Google Scholar 

  • Barinova J, Clement C, Marting L, Baillieul F, Soukupova H, Heberle-Bors E, Touraev A (2004) Regulation of developmental pathways in cultured microspores of tobacco and snapdragon by medium pH. Planta 219:141–146

    Article  PubMed  CAS  Google Scholar 

  • Borderies G, le Béchec M, Rossignol M, Laflitte C, Deunnff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K, Fiers M, Liu CM, van Der Geest AHM (2005) Biochemical and molecular aspects of haploid embryogenesis. In: Palmer CE, Keller WA, Kasha KJ (eds) Biotechnology in agriculture and forestry, vol 56., Haploids in crop improvementSpringer, Berlin, pp 73–95

    Google Scholar 

  • Cao MQ, Charlot F, Doré C (1990) Embryogenesis and plant regeneration in sauerkraut cabbage (Brassica oleracea L. subsp. capitata) by in vitro culture of isolated microspores. C R Acad Sci Paris Ser III 310:203–209

    Google Scholar 

  • Capataz-Tafur J, Trejo-Tapia G, Rodríguez-Monroy M, Sepúlveda-Jiménez G (2011) Arabinogalactan proteins are involved in cell aggregation of cell suspension cultures of Beta vulgaris L. Plant Cell Tiss Org Cult 106:169–177

    Article  CAS  Google Scholar 

  • Chaves I, Regalado AP, Chen M, Ricardo CP, Showalter AM (2002) Programmed cell death induced by (β-d-galactosyl)3 Yariv reagent in Nicotiana tabacum BY-2 suspension-cultured cells. Physiol Plantarum 116:548–553

    Article  CAS  Google Scholar 

  • Custers JBM, Cordewener JHG, Nöllen Y, Dons HJM, Van Lookern Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271

    Article  CAS  Google Scholar 

  • Dias JS (1999) Effect of Activated charcoal on Brassica oleracea microspore culture embryogenesis. Euphytica 108:65–69

    Article  Google Scholar 

  • Duijs JG, Voorrips RE, Visser DL, Custers JBM (1992) Microspore culture is successful in most crop types of Brassica oleracea L. Euphytica 60:45–55

    Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult 104:301–309

    Article  Google Scholar 

  • Ferrie AMR, Bethune TD, Arganosa GC, Waterer D (2011) Field evaluation of doubled haploid plants in the Apiaceae: dill (Anethum graveolens L.), caraway (Carum carvi L.), and fennel (Foeniculum vulgare Mill.). Plant Cell Tiss Org Cult 104:407–413

    Article  Google Scholar 

  • Gaillard A, Vergne P, Beckert M (1991) Optimization of maize isolation and conditions for reliable plant regeneration. Plant Cell Rep 10:55–58

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Showalter AM (1999) Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J 19:321–331

    Article  PubMed  CAS  Google Scholar 

  • Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Org Cult 104:283–300

    Article  Google Scholar 

  • Gland A, Lichter R, Schweiger HG (1988) Genetic and exogenous factors affecting embryogenesis in isolated microspore cultures of Brassica napus L. J Plant Physiol 132:613–617

    Article  Google Scholar 

  • Gu HH, Hagberg P, Zhou WJ (2004) Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regul 42:137–143

    Article  CAS  Google Scholar 

  • Gustafson V, Baenziger PS, Wright MS, Stroup WW, Yen Y (1995) Isolated wheat microspore culture. Plant Cell Tiss Org Cult 42:207–213

    Article  Google Scholar 

  • Hale AL, Farnham MW, Ndambe Nzaramba M, Kimbeng CA (2007) Heterosis for horticultural traits in broccoli. Theor Appl Genet 115:351–360

    Article  PubMed  CAS  Google Scholar 

  • Hansen M (1994) Gametic embryogenesis in Brassica: optimization of production and germination of embryos. In: Javornik B, Bohanec B, Kreft I (eds) Proceedings of the international colloquium on impact of plant biotechnology on agriculture. Rogla, Slovenia, Centre for Plant Biotechnology and Breeding, University of Ljubjana, Slovenia, pp 15–18

    Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    Article  PubMed  CAS  Google Scholar 

  • Kreuger M, van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248

    Article  CAS  Google Scholar 

  • Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432

    Article  CAS  Google Scholar 

  • Lemonnier-Le Penhuizic C, Chatelet C, Kloareg B, Potin P (2001) Carrageenan oligosaccharides enhance stress induced microspore embryogenesis in Brassica oleracea var italica. Plant Sci 160:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698

    Article  PubMed  CAS  Google Scholar 

  • Lichter R (1981) Anther culture of Brassica napus in a liquid culture medium. Z Pflanzenphysiol 103:229–237

    CAS  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus L. Z Pflanzenphysiol 105:427–434

    Google Scholar 

  • Lichter R (1989) Efficient yield of embryoids by culture of isolated microspores of different Brassicaceae species. Plant Breed 103:119–123

    Article  Google Scholar 

  • Liu W, Zheng MY, Konzak CF (2001) Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Rep 20:821–824

    Google Scholar 

  • Majewska-Sawka A, Nothnagel EA (2000) The multiple role of arabinogalactan-proteins in plant development. Plant Physiol 122:3–9

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Villaluenga C, Peñas E, Frias J, Ciska E, Honke J, Piskula MK, Kozlowska H, Vidal-Valverde C (2009) Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J Food Sci 74:C62–C67

    Article  PubMed  CAS  Google Scholar 

  • McCabe PF, Leaver CJ (2000) Programmed cell death in cell cultures. Plant Mol Biol 44:359–368

    Article  PubMed  CAS  Google Scholar 

  • McCabe PF, Valentine TA, Forsberg LS, Pennell RI (1997) Soluble signals from cells identified at the cell wall, establish a developmental pathway in carrot. Plant Cell 9:2225–2241

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    Article  PubMed  CAS  Google Scholar 

  • Pechan PM, Smykal P (2001) Androgenesis: affecting the fate of the male gametophyte. Physiol Plantarum 111:1–8

    Article  CAS  Google Scholar 

  • Rudolf K, Bohanec B, Hansen M (1999) Microspore culture of white cabbage, Brassica oleracea var. capitata L: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed 118:237–241

    Article  CAS  Google Scholar 

  • Serpe MD, Nothnagel EA (1994) Effects of Yariv phenylglycosides on Rosa cell suspensions: evidence for the improvement of arabinogalactan-proteins in cell proliferation. Planta 193:542–550

    Article  CAS  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plantarum 127:519–534

    Article  CAS  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression, and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  • Sunderland N, Xu ZH (1982) Shed pollen culture in Hordeum vulgare. J Exp Bot 136:1086–1095

    Article  Google Scholar 

  • Takahata Y, Keller WA (1991) High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci 74:235–242

    Article  Google Scholar 

  • Tang XC, He YQ, Wang Y, Sun MX (2006) The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. J Exp Bot 57(11):2639–2650

    Article  PubMed  CAS  Google Scholar 

  • Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996a) Stress induced microspore embryogenesis from tobacco microspores: an optimized system for molecular studies. Plant Cell Rep 15:561–565

    Article  CAS  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Vicente JG, Dias JS (1996) Production of embryos from microspore cultures of Portuguese tronchuda cabbage landraces. Acta Hortic 407:219–226

    Google Scholar 

  • Vrinten PL, Nakamur T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley Hordeum vulgare L. Plant Mol Biol 41:455–463

    Article  PubMed  CAS  Google Scholar 

  • Winarto B, Teixeira da Silva JA (2011) Microspore culture protocol for Indonesian Brassica oleracea. Plant Cell Tiss Org Cult 107:305–315

    Article  Google Scholar 

  • Yan Z, Tian ZH, Meng JL (1999) Primary study on the isolated microspores culture of Brassica oleracea L. J Huazhong Agric Univ 18:5–7

    Google Scholar 

  • Yuan SX, Liu YM, Fang ZY, Yang LM, Zhuang M, Zhang YY, Sun PT (2011) Effect of combined cold pretreatment and heat shock on microspore cultures in broccoli. Plant Breed 130:80–85

    Article  Google Scholar 

  • Zhang W, Fu Q, Dai XG, Bao MZ (2008) The culture of isolated microspores of ornamental kale (Brassica oleracea var. acephala) and the importance of genotype to embryo regeneration. Sci Hortic 117:69–72

    Article  CAS  Google Scholar 

  • Zhao JP, Simmonds DH, Newcomb W (1996) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198:433–439

    Article  CAS  Google Scholar 

  • Zheng MY, Liu W, Weng Y, Polle E, Konzak CF (2001) Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals. Plant Cell Rep 20:685–690

    Article  CAS  Google Scholar 

  • Zonia LE, Tupy J (1995) Lithium treatment of Nicotiana tabacum microspores blocks polar nuclear migration, disrupts the partitioning of membrane-associated Ca+2, and induces symmetrical mitosis. Sex Plant Reprod 8:152–160

    Article  Google Scholar 

Download references

Acknowledgments

The above work was funded by Chinese National Natural Science (30871708), Chinese National Key Technology R&D Program (2006BAD13B06), Chinese Ministry of Agriculture ‘948’ Program (2006-G-13A) and Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Chinese Ministry of Agriculture. We also acknowledge partial funding from the earmarked fund for modern Agro-industry Technology Research System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-mei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Sx., Su, Yb., Liu, Ym. et al. Effects of pH, MES, arabinogalactan-proteins on microspore cultures in white cabbage. Plant Cell Tiss Organ Cult 110, 69–76 (2012). https://doi.org/10.1007/s11240-012-0131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0131-z

Keywords

Navigation