Skip to main content
Log in

The use and misuse of van der Waals radii

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A widely used criterion for the existence of a noncovalent interaction is that the interatomic separation be less than the sum of the van der Waals radii of the respective atoms. However, this criterion should not be applied rigidly, but rather with considerable caution and flexibility, for several reasons. First, there is considerable uncertainty in the values assigned as van der Waals radii. Second, because of the manner in which they are assigned, their sums will necessarily miss a significant number of noncovalent interactions. Finally, not all interactions are between atoms; sometimes, instead of an atom, it is a region of positive or negative electrostatic potential that is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

See manuscript.

References

  1. Stevens ED (1979). Mol Phys 37:27–45

    Article  CAS  Google Scholar 

  2. Nyburg SC, Faerman CH (1985). Acta Cryst B41:274–279

    Article  CAS  Google Scholar 

  3. Ikuta, S. J. Mol. Struct. (Theochem), 1990, 205, 191–201

  4. Batsanov SS (2000). Struct Chem 11:177–183

    Article  CAS  Google Scholar 

  5. Eramian H, Tian Y-H, Fox Z, Beneberu HZ, Kertesz MJ (2013). Phys Chem A 117:14184–14190

    Article  CAS  Google Scholar 

  6. Politzer P, Murray JS, Clark T (2013). Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  7. Politzer P, Murray JS (2020). ChemPhysChem 21:579–588

    Article  CAS  Google Scholar 

  8. Bondi A (1964). J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  9. Rowland RS, Taylor RJ (1996). Phys Chem 100:7384–7391

    Article  CAS  Google Scholar 

  10. Pauling L (1960) The nature of the chemical bond3rd edn. Cornell University Press, Ithaca, NY

    Google Scholar 

  11. Sanderson RT (1960) Chemical periodicity. Van Nostrand Reinhold, New York

    Google Scholar 

  12. Yang Z-Z, Davidson ER (1997). Internat J Quantum Chem 62:47–53

    Article  CAS  Google Scholar 

  13. Badenhoop JK, Weinhold FAJ (1997). Chem Phys 107:5422–5432

    CAS  Google Scholar 

  14. Batsanov SS (2001). Inorg Mater 37:871–885

    Article  CAS  Google Scholar 

  15. Alvarez S (2013). Dalton Trans 42:8617–8636

    Article  CAS  Google Scholar 

  16. Dance I, New J (2003). Chem. 27:22–27

    CAS  Google Scholar 

  17. Politzer P, Murray JS, Lane P (2007). Internat. J. Quantum Chem. 107:3046–3052

    Article  CAS  Google Scholar 

  18. Hellmann H (1937) Einführung in die Quantenchemie. Deuticke, Leipzig

    Google Scholar 

  19. Feynman RP (1939). Phys Rev 56:340–343

    Article  CAS  Google Scholar 

  20. Hennemann M, Murray JS, Riley KE, Politzer P, Clark TJ (2012). Mol. Model. 18:2461–2469

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS, Clark T (2015). J Mol Model 21:52

    Article  Google Scholar 

  22. Clark T, Politzer P, Murray JS (2015). WIREs Comput Mol Sci 5:169–177

    Article  CAS  Google Scholar 

  23. Clark T, Murray JS, Politzer P (2018). Phys Chem Chem Phys 20:30076–30082

    Article  CAS  Google Scholar 

  24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A. et al, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009

  25. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer PJ (2010). Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  26. Politzer P, Murray JS, Clark T, Resnati G (2017). Phys Chem Chem Phys 19:32166–32178

    Article  CAS  Google Scholar 

  27. Politzer P, Resnati G, Murray JS (2017). Faraday Disc 203:113–130

    Article  Google Scholar 

  28. Politzer P, Murray JS (2019). Crystals 9:165

    Article  CAS  Google Scholar 

  29. Nayak SK, Kumar V, Murray JS, Politzer P, Terraneo G, Pilati T, Metrangolo P, Resnati G (2017). CrystEngComm 19:4955–4959

    Article  CAS  Google Scholar 

  30. Murray JS, Shields ZP-I, Seybold PG, Politzer PJ (2015). Comput Sci 10:209–216

    Article  Google Scholar 

  31. Politzer P, Murray JS (2015). Cryst Growth Des 15:3767–3774

    Article  CAS  Google Scholar 

  32. Politzer P, Murray JSJ (2018). Comput Chem 39:464–471

    Article  CAS  Google Scholar 

  33. . Bent, H. A. Chem. Rev. 1968, 68, 587–648

Download references

Funding

P. Politzer and J. S. Murray.

Author information

Authors and Affiliations

Authors

Contributions

Calculations: J. S. Murray, 83.79%, and P. Politzer, 16.21%. Writing: J. S. Murray, 19.75%, and P. Politzer, 80.25%. Thinking: not applicable.

Corresponding author

Correspondence to Peter Politzer.

Ethics declarations

Competing interests

None.

Ethical approval

None.

Consent to participate

Participation was consensual.

Consent to publish

Dependent upon journal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. The use and misuse of van der Waals radii. Struct Chem 32, 623–629 (2021). https://doi.org/10.1007/s11224-020-01713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01713-7

Keywords

Navigation