Skip to main content

Introduction to the Volume

  • Chapter
  • First Online:
Noncovalent Forces

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 19))

  • 1659 Accesses

Abstract

The reader is introduced to the definition and diversity of noncovalent forces. The division of these interactions into various subtopics is explained by way of introducing each of the chapters. A brief exposition is provided of the typical means by which computational chemists study these forces, and the language that is commonly used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Google Scholar 

  2. Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C=OH–O hydrogen bond in H2COH2O and H2CO2H2O. J Chem Phys 55:1236–1244

    Google Scholar 

  3. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325–340

    Google Scholar 

  4. Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding, and proton affinity. Acc Chem Res 10:294–300

    Google Scholar 

  5. Stevens WJ, Fink WH (1987) Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer. Chem Phys Lett 139:15–22

    Google Scholar 

  6. Chen W, Gordon MS (1996) Energy decomposition analyses for many-body interaction and applications to water complexes. J Phys Chem 100:14316–14328

    Google Scholar 

  7. van der Vaar A, Merz KM (1999) Divide and conquer interaction energy decomposition. J Phys Chem A 103:3321–3329

    Google Scholar 

  8. Salvador P, Duran M, Mayer I (2001) One- and two-center energy components in the atoms in molecules theory. J Chem Phys 115:1153–1157

    Google Scholar 

  9. Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237

    Google Scholar 

  10. Khaliullin RZ, Bell AT, Head-Gordon M (2008) Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals. J Chem Phys 128:184112

    Google Scholar 

  11. Szalewicz K, Jeziorski B, Rybak S (1991) Perturbation theory calculations of intermolecular interaction energies. Int J Quantum Chem QBS 18:23–36

    Google Scholar 

  12. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der waals complexes. Chem Rev 94:1887–1930

    Google Scholar 

  13. Szalewicz K, Jeziorski B (1997) In: S. Scheiner (ed), Molecular Interactions. From Van der Waals to strongly bound complexes. Wiley, New York, p 3–43

    Google Scholar 

  14. Parrish RM, Sherrill CD (2014) Spatial assignment of symmetry adapted perturbation theory interaction energy components: the atomic SAPT partition. J Chem Phys 141:044115

    Google Scholar 

  15. Stone AJ (1993) Computation of charge-transfer energies by perturbation theory. Chem Phys Lett 211:101–109

    Google Scholar 

  16. Stone AJ, Misquitta AJ (2009) Charge-transfer in Symmetry-Adapted Perturbation Theory. Chem Phys Lett 473:201–205

    Google Scholar 

  17. Misquitta AJ (2013) Charge Transfer from Regularized Symmetry-Adapted Perturbation Theory. J Chem Theory Comput 9:5313–5326

    Google Scholar 

  18. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102

    Google Scholar 

  19. Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions. J Chem Phys 100:2900–2909

    Google Scholar 

  20. Glendening ED (1996) Natural energy decomposition analysis: explicit evaluation of electrostatic and Polarization effects with application to aqueous clusters of alkali metal cations and neutrals. J Am Chem Soc 118:2473–2482

    Google Scholar 

  21. Schenter GK, Glendening ED (1996) Natural energy decomposition analysis: the linear response electrical self energy. J Phys Chem 100:17152–17156

    Google Scholar 

  22. Glendening ED (2005) Natural energy decomposition analysis: extension to density functional methods and analysis of cooperative effects in water clusters. J Phys Chem A 109:11936–11940

    Google Scholar 

  23. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 46:1–10

    Google Scholar 

  24. Bagus PS, Hermann K, Bauschlicher CWJ (1984) A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3. J Chem Phys 80:4378–4386

    Google Scholar 

  25. van der Vaart A, Merz KM (1999) Divide and conquer interaction energy decomposition. J Phys Chem A 103:3321–3329

    Google Scholar 

  26. Mo Y, Gao J, Peyerimhoff SD (2000) Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach. J Chem Phys 112:5530–5538

    Google Scholar 

  27. Khaliullin RZ, Head-Gordon M, Bell AT (2006) An efficient self-consistent field method for large systems of weakly interacting components. J Chem Phys 124:204105

    Google Scholar 

  28. Mitoraj M, Michalak A (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13:347–355

    Google Scholar 

  29. Reinhardt P, Piquemal J-P, Savin A (2008) Fragment-Localized Kohn–Sham orbitals via a singles configuration-interaction procedure and application to local properties and intermolecular energy decomposition analysis†. J Chem Theory Comput 4:2020–2029

    Google Scholar 

  30. Wu Q, Ayers PW, Zhang Y (2009) Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies. J Chem Phys 131:164112

    Google Scholar 

  31. Horn PR, Sundstrom EJ, Baker TA, Head-Gordon M (2013) Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: Theory and applications to intermolecular interactions involving radicals. J Chem Phys 138:134119

    Google Scholar 

  32. Xantheas SS, Dunning THJ (1993) Ab initio studies of cyclic water clusters (H2O)n, n = 1–6. I. Optimal structures and vibrational spectra. J Chem Phys 99:8774–8792

    Google Scholar 

  33. Xantheas SS (1994) Ab initio studies of cyclic water clusters (H2O)n, n = 1–6. II. Analysis of many-body interactions. J Chem Phys 100:7523–7534

    Google Scholar 

  34. Bader RFW (1990) Atoms in molecules, a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  35. Bader RFW, Cheeseman JR, Laidig KE, Wiberg KB, Breneman C (1990) Origin of rotation and inversion barriers. J Am Chem Soc 112:6530–6536

    Google Scholar 

  36. Popelier PLA (2000) Atoms in molecules. An introduction. Prentice Hall, Harlow

    Google Scholar 

  37. Popelier PLA, Bader RFW (1992) The existence of an intramolecular C–H–O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189:542–548

    Google Scholar 

  38. Domagala M, Grabowski SJ (2009) XHπ and X–HN hydrogen bonds—acetylene and hydrogen cyanide as proton acceptors. Chem Phys 363:42–48

    Google Scholar 

  39. Grabowski SJ, Ugalde JM (2010) Bond Paths Show Preferable Interactions: Ab Initio and QTAIM Studies on the X–Hπ Hydrogen Bond. J Phys Chem A 114:7223–7229

    Google Scholar 

  40. Grabowski SJ (2013) Dihydrogen bond and X–Hσ interaction as sub-classes of hydrogen bond. J Phys Org Chem 26:452–459

    Google Scholar 

  41. Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theory Comput 9:3263–3266

    Google Scholar 

  42. Jablonski M (2012) Energetic and geometrical evidence of nonbonding character of some intramolecular halogen···oxygen and other Y···Y interactions. J Phys Chem A 116:3753–3764

    Google Scholar 

  43. Jablonski M, Palusiak M (2013) The halogenoxygen interaction in 3-halogenopropenal revisited—the dimer model vs. QTAIM indications. Chem Phys 415:207–213

    Google Scholar 

  44. Varadwaj PR, Varadwaj A, Jin B-Y (2014) Significant evidence of CO and CC long-range contacts in several heterodimeric complexes of CO with CH3–X, should one refer to them as carbon and dicarbon bonds! Phys Chem Chem Phys 16:17238–17252

    Google Scholar 

  45. Cormanich RA, Moreira MA, Freitas MP, Ramalho TC, Anconi CPA, Rittner R, Contreras RH, Tormena CF (2011) 1hJFH coupling in 2-fluorophenol revisited: Is intramolecular hydrogen bond responsible for this long-range coupling? Magn Reson Chem 49:763–767

    Google Scholar 

  46. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Google Scholar 

  47. Azofra LM, Scheiner S (2014) Complexation of n SO2 Molecules (n = 1,2,3) with formaldehyde and thioformaldehyde. J Chem Phys 140:034302

    Google Scholar 

  48. Azofra LM, Scheiner S (2014) Complexes containing CO2 and SO2. mixed dimers, trimers and tetramers. Phys Chem Chem Phys 16:5142–5149

    Google Scholar 

  49. Weinhold F, Schleyer PvR, McKee WC (2014) Bay-type H···H “bonding” in cis-2-butene and related species: QTAIM versus NBO description. J Comput Chem 35:1499–1508

    Google Scholar 

  50. Alkorta I, Sanchez-Sanz G, Elguero J (2014) Pnicogen bonds between X = PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases. J Phys Chem A 118:1527–1537

    Google Scholar 

  51. Foroutan-Nejad C, Shahbazian S, Marek R (2014) Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths. Chem Eur J 20:10140–10152

    Google Scholar 

  52. Ma F, Li A (2014) A computational study of pnicogen−hydride interaction in complexes XH2PHBeY. Comput Theor Chem 1045:78–85

    Google Scholar 

  53. Cormanich RA, Rittner R, O’Hagan D, Bühl M (2014) Analysis of CF···FC interactions on cyclohexane and naphthalene frameworks. J Phys Chem A 118:7901–7910

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Scheiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scheiner, S. (2015). Introduction to the Volume. In: Scheiner, S. (eds) Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-14163-3_1

Download citation

Publish with us

Policies and ethics