Skip to main content
Log in

Computational study on the reaction mechanism of atmospheric oxidation of ethanol with ozone

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction of C2H5OH and O3 on the singlet potential energy surface is carried out using the MP2 and CCSD(T)//MP2 theoretical approaches in connection with the 6-311++G(d,p) basis set. Three pre-reactive complexes C1, C2, and C3 are formed between ethanol and ozone at atmospheric pressure and 298.15 K temperature. With variety of the complexes, seven types of product are obtained which four types of them have enough thermodynamic stability. In thermodynamic approach, the most favor product begins with the formation of pre-reactive C2 complex and produces the CH3CH(OH)2 + O2 as final adduct in a process that is computed to be exothermic by −53.759 kcal/mol and spontaneous reaction by −51.833 kcal/mol in Gibbs free energy. In kinetic viewpoint, the formation of CH3COH + cis-H2O3 as a final adducts is the most favor path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goodarzi M, Vahedpour M, Solimannejad M (2012) Struct Chem 23:381

    Article  CAS  Google Scholar 

  2. Vahedpour M, Zolfaghari F (2011) Struct Chem 22:1331

    Article  CAS  Google Scholar 

  3. Vahedpour M, Goodarzi M, Hajari N, Nazari F (2011) Struct Chem 22:817

    Article  CAS  Google Scholar 

  4. Siegbahn PEM (2003) Q Rev Biophys 36:91

    Article  CAS  Google Scholar 

  5. Farrokhpour H, Fathi F (2011) J Comput Chem 32:2479

    Article  CAS  Google Scholar 

  6. Lin Y, Tanaka S (2006) Appl Microbiol Biotechnol 69:627

    Article  CAS  Google Scholar 

  7. Energy Information Administration, Alternatives to Traditional Transportation Fuels (1996) DOE/EIA-0585

  8. Badger PC (2002) Ethanol from cellulose: a general review. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. American Society for Horticultural Science (ASHS) Press, Alexandria, VA

    Google Scholar 

  9. Li J, Kazakov A, Dryer LF (2005) In: Proceedings of the European Combustion Meeting. http://www.princeton.edu/~combust

  10. Morais PB, Rosa CA, Linardi VR, Carazza F, Nonato EA (1996) Biotechnol Lett 18:1351

    Article  CAS  Google Scholar 

  11. Li J, Kazakov A, Chaos M, and Drye FL, (2007) In: 5th US Combustion Meeting Organized by the Western States Section of the Combustion Institute and Hosted by the University of California at San Diego, March 25–28

  12. Marinov NM (1999) Int J Chem Kinet 31:183

    Article  CAS  Google Scholar 

  13. Shereshovets VV, Shafikov NY, Lomakin GS, Ivanov AI, Akhunov IR, Ponomarev OA, Komissarov VD (1985) Russ Chem Bull 34:1157

    Article  Google Scholar 

  14. Oyama ST, Li W (1997) Stud Surf Sci Catal 110:873

    Article  Google Scholar 

  15. Oyama ST, Li W, Zhang W (1999) Stud Surf Sci Catal 121:105

    Article  CAS  Google Scholar 

  16. Mayotte S, Lindhjem C, Rao V, Sklar M (1994) Reformulated gasoline effects on exhaust emissions: phase I: initial investigation of oxygenate, volatility, distillation and sulfur effects. SAE Paper No. 941973

  17. Carr SA, Blitz MA, Seakins PW (2011) J Phys Chem A 115:3335

    Article  CAS  Google Scholar 

  18. Fournet R, Glaude PA, Bounaceu1 R, Molière M (2009) In: Proceeding of the European Combustion Meeting

  19. Carvalho EFV, Barauna AN, Machado FBC, Roberto-Neto O (2008) Int J Quantum Chem 108:2476

    Article  CAS  Google Scholar 

  20. Clary DC, Kerkeni B (2006) Phys Chem Chem Phys 8:917

    Article  Google Scholar 

  21. Kugel R, Aube HT (1975) J Phys Chem 79:2130

    Article  CAS  Google Scholar 

  22. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  23. Cizek J (1969) Adv Chem Phys 14:35

    Article  CAS  Google Scholar 

  24. Lee TJ, Taylor PR (1989) Int J Quantum Chem Symp 23:199

    CAS  Google Scholar 

  25. Jayatilaka D, Lee TJ (1993) J Chem Phys 98:9734

    Article  CAS  Google Scholar 

  26. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision B 03). Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  28. Butkovskaya NL, Zhao Y, Setzer DW (1994) J Phys Chem 98:10779

    Article  CAS  Google Scholar 

  29. Alecu IM, Truhlar DG (2011) J Phys Chem A 115:2811

    Article  CAS  Google Scholar 

  30. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  31. Bader RFW (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

  32. Carvalho EFV, Barauna AN, Machado FBC, Roberto-Neto O (2008) Int J Quantum Chem 108:2476

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Vahedpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shayan, K., Vahedpour, M. Computational study on the reaction mechanism of atmospheric oxidation of ethanol with ozone. Struct Chem 24, 611–621 (2013). https://doi.org/10.1007/s11224-012-0111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0111-2

Keywords

Navigation