Skip to main content
Log in

Theoretical study on the atmospheric formation of sulfur trioxide as the primary agent for acid rain

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction mechanism of SO2 with O3 on the singlet potential energy surface has been investigated theoretically at the G3MP2B3//B3LYP/6-311+G(3df) level of theory. The reactants are initially associated with adducts IN1(O2S–OOO) and IN2(OS-cyclic O4) in a barrier-less process. Subsequently, these adducts undergo isomerization and dissociation processes to produce cis-OSOO + 3O2, SO3(C s ) + 3O2 and SO3(D 3h ) + 3O2 products. The SO3(D 3h ) + 3O2 is major product and the cis-OSOO + 3O2 and SO3(C s ) + 3O2 are minor products. No stable pathway has been found for the formation of trans-OSOO and cyclic-SOOO isomers in the reaction of SO2 + O3. For major product, the rate constant of SO2 + O3 reaction is 2.30 × 10−23 cm3 molecule−1 s−1, at room temperature and atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Farquhar J, Bao H, Thiemens M (2000) Science 289:756

    Article  CAS  Google Scholar 

  2. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Science 298:2372

    Article  CAS  Google Scholar 

  3. Ballester MY, Caridade PJSB, Varandas AJC (2007) Chem Phys Lett 439:301

    Article  CAS  Google Scholar 

  4. Jou S, Shen M, Yu C, Lee Y (1996) J Chem Phys 104:15

    Article  Google Scholar 

  5. Wayne RP (1991) The chemistry of the atmosphere, 2nd edn. Clarendon, Oxford

    Google Scholar 

  6. Calvert JC, Lazarus A, Kok GL, Heikes BG, Walega JG, Lind J, Cantrell CA (1985) Nature 317:27

    Article  CAS  Google Scholar 

  7. Leopold KR, Bowen KH, Klemperer W (1981) J Chem Phys 74:4211

    Article  CAS  Google Scholar 

  8. Bent R, Ladner WR (1963) Spectrochim Acta 19:931

    Article  CAS  Google Scholar 

  9. Dorney AJ, Hoy AR, Mills IM (1973) J Mol Spectrosc 45:253

    Article  CAS  Google Scholar 

  10. Tang SY, Brown CW (1975) J Raman Spectrosc 3:387

    Article  CAS  Google Scholar 

  11. Kaldor A, Maki AG, Dorney AJ, Mills IM (1973) J Mol Spectrosc 45:247

    Article  CAS  Google Scholar 

  12. Brassington NJ, Edwards HGM, Farwell DW, Long DA, Mansour HR (1978) J Raman Spectrosc 7:154

    Article  CAS  Google Scholar 

  13. Henfrey NF, Thrush BA (1983) Chem Phys Lett 102:135

    Article  CAS  Google Scholar 

  14. Bondybey VE, English JH (1985) J Mol Spectrosc 109:221

    Article  CAS  Google Scholar 

  15. March J (1985) Advanced organic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  16. Atkinson R, Cater WPL (1984) Chem Rev 84:437

    Article  CAS  Google Scholar 

  17. Atkinson R (1990) Atoms Environ 24A:1

    CAS  Google Scholar 

  18. Atkinson R, Aschmann SM (1993) Environ Sci Technol 27:1357

    Article  CAS  Google Scholar 

  19. Baird C (1998) Environmental chemistry. Freeman, New York

    Google Scholar 

  20. Goodarzi M, Vahedpour M, Nazari F (2010) Struct Chem 21:915

    Article  CAS  Google Scholar 

  21. Xu ZF, Lin MC (2007) Chem Phys Lett 440:12

    Article  CAS  Google Scholar 

  22. Peiró-García J, Nebot-Gil I (2004) Chem Phys Lett 391:195

    Article  Google Scholar 

  23. De Petris G, Cartoni A, Rosi M, Troiani A (2005) Chem Phys Lett 410:377

    Article  Google Scholar 

  24. Varandas AJC, Zhang L (2004) Chem Phys Lett 385:409

    Article  CAS  Google Scholar 

  25. Goodarzi M, Piri F, Hajari N, Karimi L (2010) Chem Phys Lett 499:51

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision B 03). Gaussian, Inc, Pittsburgh, PA

    Google Scholar 

  27. Goodarzi M, Vahedpour M, Nazari F (2010) Chem Phys Lett 494:315

    Article  CAS  Google Scholar 

  28. Goodarzi M, Vahedpour M, Nazari F (2010) Chem Phys Lett 497:1

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JAJ (1998) Chem Phys 109:7764

    CAS  Google Scholar 

  32. Boboul AG, Curtiss LA, Redfern PC, Raghavachari KJ (1999) Chem Phys 110:7650

    Google Scholar 

  33. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  34. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  35. Schofield K (2001) Combust Flame 124:137

    Article  CAS  Google Scholar 

  36. Hills A, Cicerone R, Calvert J, Birks J (1987) J Phys Chem 91:1199

    Article  CAS  Google Scholar 

  37. Eyring H (1935) J Chem Phys 3:1079

    Google Scholar 

  38. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875

    Article  CAS  Google Scholar 

  39. Miyoshi A (2010) Gaussian post processor (GPOP). University of Tokyo, Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Vahedpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vahedpour, M., Goodarzi, M., Hajari, N. et al. Theoretical study on the atmospheric formation of sulfur trioxide as the primary agent for acid rain. Struct Chem 22, 817–822 (2011). https://doi.org/10.1007/s11224-011-9758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9758-3

Keywords

Navigation