Skip to main content
Log in

Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the post-eruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. http://wind.nasa.gov/index_WI_ICME_list.htm .

  2. http://cdaw.gsfc.nasa.gov/CME_list/ .

  3. http://ipshocks.fi/ .

  4. http://www-ssc.igpp.ucla.edu/forms/polar/corr_data.html .

  5. http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm .

References

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 2005, Magnetic helicity conservation. Highlights Astron. 13, 85. ADS .

    Article  ADS  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1994, Eruptive prominences as sources of magnetic clouds in the solar wind. Space Sci. Rev. 70, 215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266. DOI . ADS .

    Article  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock—Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: 1997, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. 102, 7075. DOI . ADS .

    Article  ADS  Google Scholar 

  • Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chae, J.: 2000, The magnetic helicity sign of filament chirality. Astrophys. J. Lett. 540, L115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Colaninno, R.C., Vourlidas, A., Wu, C.C.: 2013, Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. 118, 6866. DOI . ADS .

    Article  Google Scholar 

  • Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys. 244, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Priest, E.R., Lonie, D.P.: 1996, Three-dimensional magnetic reconnection without null points 2. Application to twisted flux tubes. J. Geophys. Res. 101, 7631. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fan, Y., Gibson, S.E.: 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. Lett. 589, L105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Russell, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser. 58, AGU, Washington D.C., 343. ADS .

    Chapter  Google Scholar 

  • Gosling, J.T., McComas, D.J., Phillips, J.L., Bame, S.J.: 1991, Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831. DOI . ADS .

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B.: 2009, Flux rope formation preceding coronal mass ejection onset. Astrophys. J. Lett. 700, L83. DOI . ADS .

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B.: 2014, Observations of flux rope formation prior to coronal mass ejections. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) Nature of Prominences and their Role in Space Weather, IAU Symposium 300, 209. DOI . ADS .

    Google Scholar 

  • Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gui, B., Shen, C., Wang, Y., Ye, P., Liu, J., Wang, S., Zhao, X.: 2011, Quantitative analysis of CME deflections in the corona. Solar Phys. 271, 111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hau, L.-N., Sonnerup, B.U.Ö.: 1999, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104, 6899. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. 107, 1142. DOI . ADS .

    Article  Google Scholar 

  • Hudson, H.S., Webb, D.F.: 1997, Soft X-ray signatures of coronal ejections. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, AGU, Washington D.C., 27. DOI .

    Chapter  Google Scholar 

  • Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23, 625. DOI . ADS .

    Article  ADS  Google Scholar 

  • Isavnin, A.: 2016, FRiED: A novel three-dimensional model of coronal mass ejections. Astrophys. J. 833, 267. DOI . ADS .

    Article  ADS  Google Scholar 

  • Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J.: 2011, Grad–Shafranov reconstruction of magnetic clouds: Overview and improvements. Solar Phys. 273, 205. DOI . ADS .

    Article  ADS  Google Scholar 

  • Isavnin, A., Vourlidas, A., Kilpua, E.K.J.: 2014, Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet. Solar Phys. 289, 2141. DOI . ADS .

    Article  ADS  Google Scholar 

  • James, A.W., Green, L.M., Palmerio, E., Valori, G., Reid, H.A.S., Baker, D., Brooks, D.H., Van Driel-Gesztelyi, L., Kilpua, E.K.J.: 2017, On-disc observations of flux rope formation prior to its eruption. Solar Phys., submitted.

  • Janvier, M., Aulanier, G., Bommier, V., Schmieder, B., Démoulin, P., Pariat, E.: 2014, Electric currents in flare ribbons: Observations and three-dimensional standard model. Astrophys. J. 788, 60. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N.: 2015, Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. J. Geophys. Res. 120, 3328. DOI . ADS .

    Article  Google Scholar 

  • Jian, L., Russell, C.T., Gosling, J.T., Luhmann, J.G.: 2005, Total pressure signature as a qualitative indicator of the impact parameter during ICME encounters. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ESA SP-592, 731. ADS .

    Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kay, C., Opher, M., Colaninno, R.C., Vourlidas, A.: 2016, Using ForeCAT deflections and rotations to constrain the early evolution of CMEs. Astrophys. J. 827, 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2011, Multipoint ICME encounters: Pre-STEREO and STEREO observations. J. Atmos. Solar-Terr. Phys. 73, 1228. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B.: 2014, Solar sources of interplanetary coronal mass ejections during the solar cycle 23/24 minimum. Solar Phys. 289, 3773. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: An overview. Solar Phys. 243, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kubicka, M., Möstl, C., Amerstorfer, T., Boakes, P.D., Feng, L., Eastwood, J.P., Törmänen, O.: 2016, Prediction of geomagnetic storm strength from inner heliospheric in situ observations. Astrophys. J. 833, 255. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Behannon, K.W.: 1980, Magnetic field directional discontinuities. I – Minimum variance errors. J. Geophys. Res. 85, 4695. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • López Fuentes, M.C., Demoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2000, The counterkink rotation of a non-Hale active region. Astrophys. J. 544, 540. DOI . ADS .

    Article  ADS  Google Scholar 

  • Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: Magnetic tongues. Solar Phys. 270, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., Li, Y., Luhmann, J.G., DeVore, C.R.: 2009, Rotation of coronal mass ejections during eruption. Astrophys. J. 697, 1918. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martin, S.F.: 1998, Filament chirality: A link between fine-scale and global patterns (review). In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astron. Soc. Pacific C.S. 150, 419. ADS .

    Google Scholar 

  • Martin, S.F.: 2003, Signs of helicity in solar prominences and related features. Adv. Space Res. 32, 1883. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martin, S.F., Bilimoria, R., Tracadas, P.W.: 1994, Magnetic field configurations basic to filament channels and filaments. In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, NATO Advanced Science Institutes (ASI) Series C 433, 303. ADS .

    Chapter  Google Scholar 

  • Martin, S.F., McAllister, A.H.: 1996, The skew of X-ray coronal loops overlying H alpha filaments. In: Uchida, Y., Kosugi, T., Hudson, H.S. (eds.) IAU Colloq. 153: Magnetodynamic Phenomena in the Solar Atmosphere – Prototypes of Stellar Magnetic Activity, 497. ADS .

    Chapter  Google Scholar 

  • Martin, S.F., Panasenco, O., Berger, M.A., Engvold, O., Lin, Y., Pevtsov, A.A., Srivastava, N.: 2012, The build-up to eruptive solar events viewed as the development of chiral systems. In: Rimmele, T.R., Tritschler, A., Wöger, F., Collados Vera, M., Socas-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P.R., Goode, P.R., Knölker, M. (eds.) Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, Astron. Soc. Pacific C.S. 463, 157. ADS .

    Google Scholar 

  • Marubashi, K.: 1986, Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6, 335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys. 290, 1371. DOI . ADS .

    Article  ADS  Google Scholar 

  • McAllister, A.H., Dryer, M., McIntosh, P., Singer, H., Weiss, L.: 1996, A large polar crown coronal mass ejection and a “problem” geomagnetic storm: April 14 – 23, 1994. J. Geophys. Res. 101, 13497. DOI . ADS .

    Article  ADS  Google Scholar 

  • McAllister, A.H., Hundhausen, A.J., Mackay, D., Priest, E.: 1998, The skew of polar crown X-ray arcades. In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astron. Soc. Pacific C.S. 150, 430. ADS .

    Google Scholar 

  • McAllister, A.H., Martin, S.F., Crooker, N.U., Lepping, R.P., Fitzenreiter, R.J.: 2001, A test of real-time prediction of magnetic cloud topology and geomagnetic storm occurrence from solar signatures. J. Geophys. Res. 106, 29185. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., Vršnak, B., Biernat, H.K.: 2008, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 26, 3139. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mulligan, T., Russell, C.T., Luhmann, J.G.: 1998, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett. 25, 2959. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mumford, S.J., Christe, S., Pérez-Suárez, D., Ireland, J., Shih, A.Y., Inglis, A.R., Liedtke, S., Hewett, R.J., Mayer, F., Hughitt, K., Freij, N., Meszaros, T., Bennett, S.M., Malocha, M., Evans, J., Agrawal, A., Leonard, A.J., Robitaille, T.P., Mampaey, B., Campos-Rozo, J.I., Kirk, M.S. (SunPy Community): 2015, SunPy – Python for solar physics. Comput. Sci. Discov. 8(1), 014009. DOI . ADS .

    Article  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Palmerio, E., Kilpua, E.K.J., Savani, N.P.: 2016, Planar magnetic structures in coronal mass ejection-driven sheath regions. Ann. Geophys. 34, 313. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Balasubramaniam, K.S.: 2003, Helicity patterns on the sun. Adv. Space Res. 32, 1867. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Canfield, R.C., McClymont, A.N.: 1997, On the subphotospheric origin of coronal electric currents. Astrophys. J. 481, 973. ADS .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Berger, M.A., Nindos, A., Norton, A.A., van Driel-Gesztelyi, L.: 2014, Magnetic helicity, tilt, and twist. Space Sci. Rev. 186, 285. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004a, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004b, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31, L18804. DOI . ADS .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.-A., Savani, N.P., Rouillard, A.P., Démoulin, P., Foullon, C., Opitz, A., Fedorov, A., Jacquey, C.J., Génot, V., Louarn, P., Luhmann, J.G., Russell, C.T., Farrugia, C.J., Galvin, A.B.: 2012, Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J. Geophys. Res. 117, A09101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, L199. DOI . ADS .

    Article  ADS  Google Scholar 

  • Savani, N.P., Vourlidas, A., Szabo, A., Mays, M.L., Richardson, I.G., Thompson, B.J., Pulkkinen, A., Evans, R., Nieves-Chinchilla, T.: 2015, Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather 13, 374. DOI . ADS .

    Article  ADS  Google Scholar 

  • Savani, N.P., Vourlidas, A., Richardson, I.G., Szabo, A., Thompson, B.J., Pulkkinen, A., Mays, M.L., Nieves-Chinchilla, T., Bothmer, V.: 2016, Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 2. Geomagnetic response. Space Weather 14. DOI .

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Gui, B., Ye, P., Wang, S.: 2011, Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Phys. 269, 389. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shiota, D., Kataoka, R.: 2016, Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14, 56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.O., Cahill, L.J. Jr.: 1967, Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171. DOI . ADS .

    Article  ADS  Google Scholar 

  • Subramanian, P., Dere, K.P.: 2001, Source regions of coronal mass ejections. Astrophys. J. 561, 372. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thompson, B.J., Cliver, E.W., Nitta, N., Delannée, C., Delaboudinière, J.-P.: 2000, Coronal dimmings and energetic CMEs in April–May 1998. Geophys. Res. Lett. 27, 1431. DOI . ADS .

    Article  ADS  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS .

    ADS  Google Scholar 

  • Tripathi, D., Bothmer, V., Cremades, H.: 2004, The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions. Astron. Astrophys. 422, 337. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. DOI . ADS .

    ADS  Google Scholar 

  • Wang, Y.-M.: 2013, On the strength of the hemispheric rule and the origin of active-region helicity. Astrophys. J. Lett. 775, L46. DOI . ADS .

    Article  ADS  Google Scholar 

  • Webb, D.F., Cliver, E.W., Crooker, N.U., Cry, O.C.S., Thompson, B.J.: 2000, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J. Geophys. Res. 105, 7491. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V.: 2008, Relationship between EIT posteruption arcades, coronal mass ejections, the coronal neutral line, and magnetic clouds. Astrophys. J. Lett. 675, L49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V.B., Wang, H., Goode, P.R., Deng, Y.: 2001, Orientation of the magnetic fields in interplanetary flux ropes and solar filaments. Astrophys. J. 563, 381. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

EP acknowledges the doctoral programme in particle physics and universe sciences (PAPU) at the University of Helsinki, the Finnish doctoral programme in astronomy and space physics, the Magnus Ehrnrooth foundation, and the Vilho, Yrjö and Kalle Väisälä Foundation for financial support. EK acknowledges UH three-year grant project 490162 and HELCATS project 400931. AJ, LG, and GV acknowledge the support of the Leverhulme Trust Research Project Grant 2014-051. LG also thanks the Royal Society for funding through their URF scheme. AI’s research is supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 606692 (HELCATS).

This research has made use of SunPy, an open-source and free community-developed solar data analysis package written in Python (Mumford et al., 2015). This paper uses data from the Heliospheric Shock Database, generated and maintained at the University of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Palmerio.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmerio, E., Kilpua, E.K.J., James, A.W. et al. Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations. Sol Phys 292, 39 (2017). https://doi.org/10.1007/s11207-017-1063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1063-x

Keywords

Navigation