Solar Physics

, 292:39 | Cite as

Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations

  • E. Palmerio
  • E. K. J. Kilpua
  • A. W. James
  • L. M. Green
  • J. Pomoell
  • A. Isavnin
  • G. Valori
Article

Abstract

A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the post-eruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.

Keywords

Coronal mass ejections: low coronal signatures, interplanetary Helicity: observations Magnetic fields: corona, interplanetary 

Notes

Acknowledgements

EP acknowledges the doctoral programme in particle physics and universe sciences (PAPU) at the University of Helsinki, the Finnish doctoral programme in astronomy and space physics, the Magnus Ehrnrooth foundation, and the Vilho, Yrjö and Kalle Väisälä Foundation for financial support. EK acknowledges UH three-year grant project 490162 and HELCATS project 400931. AJ, LG, and GV acknowledge the support of the Leverhulme Trust Research Project Grant 2014-051. LG also thanks the Royal Society for funding through their URF scheme. AI’s research is supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 606692 (HELCATS).

This research has made use of SunPy, an open-source and free community-developed solar data analysis package written in Python (Mumford et al., 2015). This paper uses data from the Heliospheric Shock Database, generated and maintained at the University of Helsinki.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Berger, M.A.: 2005, Magnetic helicity conservation. Highlights Astron. 13, 85. ADS. ADSCrossRefGoogle Scholar
  3. Bothmer, V., Schwenn, R.: 1994, Eruptive prominences as sources of magnetic clouds in the solar wind. Space Sci. Rev. 70, 215. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266. DOI. ADS. CrossRefGoogle Scholar
  6. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock—Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Cane, H.V., Richardson, I.G., Wibberenz, G.: 1997, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. 102, 7075. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Chae, J.: 2000, The magnetic helicity sign of filament chirality. Astrophys. J. Lett. 540, L115. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Colaninno, R.C., Vourlidas, A., Wu, C.C.: 2013, Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. 118, 6866. DOI. ADS. CrossRefGoogle Scholar
  11. Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys. 244, 115. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Démoulin, P., Priest, E.R., Lonie, D.P.: 1996, Three-dimensional magnetic reconnection without null points 2. Application to twisted flux tubes. J. Geophys. Res. 101, 7631. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Fan, Y., Gibson, S.E.: 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. Lett. 589, L105. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Russell, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser. 58, AGU, Washington D.C., 343. ADS. CrossRefGoogle Scholar
  17. Gosling, J.T., McComas, D.J., Phillips, J.L., Bame, S.J.: 1991, Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Green, L.M., Kliem, B.: 2009, Flux rope formation preceding coronal mass ejection onset. Astrophys. J. Lett. 700, L83. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Green, L.M., Kliem, B.: 2014, Observations of flux rope formation prior to coronal mass ejections. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) Nature of Prominences and their Role in Space Weather, IAU Symposium 300, 209. DOI. ADS. Google Scholar
  20. Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Gui, B., Shen, C., Wang, Y., Ye, P., Liu, J., Wang, S., Zhao, X.: 2011, Quantitative analysis of CME deflections in the corona. Solar Phys. 271, 111. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Hau, L.-N., Sonnerup, B.U.Ö.: 1999, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104, 6899. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. 107, 1142. DOI. ADS. CrossRefGoogle Scholar
  24. Hudson, H.S., Webb, D.F.: 1997, Soft X-ray signatures of coronal ejections. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, AGU, Washington D.C., 27. DOI. CrossRefGoogle Scholar
  25. Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23, 625. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Isavnin, A.: 2016, FRiED: A novel three-dimensional model of coronal mass ejections. Astrophys. J. 833, 267. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J.: 2011, Grad–Shafranov reconstruction of magnetic clouds: Overview and improvements. Solar Phys. 273, 205. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Isavnin, A., Vourlidas, A., Kilpua, E.K.J.: 2014, Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet. Solar Phys. 289, 2141. DOI. ADS. ADSCrossRefGoogle Scholar
  29. James, A.W., Green, L.M., Palmerio, E., Valori, G., Reid, H.A.S., Baker, D., Brooks, D.H., Van Driel-Gesztelyi, L., Kilpua, E.K.J.: 2017, On-disc observations of flux rope formation prior to its eruption. Solar Phys., submitted. Google Scholar
  30. Janvier, M., Aulanier, G., Bommier, V., Schmieder, B., Démoulin, P., Pariat, E.: 2014, Electric currents in flare ribbons: Observations and three-dimensional standard model. Astrophys. J. 788, 60. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N.: 2015, Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. J. Geophys. Res. 120, 3328. DOI. ADS. CrossRefGoogle Scholar
  32. Jian, L., Russell, C.T., Gosling, J.T., Luhmann, J.G.: 2005, Total pressure signature as a qualitative indicator of the impact parameter during ICME encounters. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ESA SP-592, 731. ADS. Google Scholar
  33. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Kay, C., Opher, M., Colaninno, R.C., Vourlidas, A.: 2016, Using ForeCAT deflections and rotations to constrain the early evolution of CMEs. Astrophys. J. 827, 70. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2011, Multipoint ICME encounters: Pre-STEREO and STEREO observations. J. Atmos. Solar-Terr. Phys. 73, 1228. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B.: 2014, Solar sources of interplanetary coronal mass ejections during the solar cycle 23/24 minimum. Solar Phys. 289, 3773. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: An overview. Solar Phys. 243, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Kubicka, M., Möstl, C., Amerstorfer, T., Boakes, P.D., Feng, L., Eastwood, J.P., Törmänen, O.: 2016, Prediction of geomagnetic storm strength from inner heliospheric in situ observations. Astrophys. J. 833, 255. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Lepping, R.P., Behannon, K.W.: 1980, Magnetic field directional discontinuities. I – Minimum variance errors. J. Geophys. Res. 85, 4695. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  44. López Fuentes, M.C., Demoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2000, The counterkink rotation of a non-Hale active region. Astrophys. J. 544, 540. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: Magnetic tongues. Solar Phys. 270, 45. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Lynch, B.J., Antiochos, S.K., Li, Y., Luhmann, J.G., DeVore, C.R.: 2009, Rotation of coronal mass ejections during eruption. Astrophys. J. 697, 1918. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Martin, S.F.: 1998, Filament chirality: A link between fine-scale and global patterns (review). In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astron. Soc. Pacific C.S. 150, 419. ADS. Google Scholar
  49. Martin, S.F.: 2003, Signs of helicity in solar prominences and related features. Adv. Space Res. 32, 1883. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Martin, S.F., Bilimoria, R., Tracadas, P.W.: 1994, Magnetic field configurations basic to filament channels and filaments. In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, NATO Advanced Science Institutes (ASI) Series C 433, 303. ADS. CrossRefGoogle Scholar
  51. Martin, S.F., McAllister, A.H.: 1996, The skew of X-ray coronal loops overlying H alpha filaments. In: Uchida, Y., Kosugi, T., Hudson, H.S. (eds.) IAU Colloq. 153: Magnetodynamic Phenomena in the Solar Atmosphere – Prototypes of Stellar Magnetic Activity, 497. ADS. CrossRefGoogle Scholar
  52. Martin, S.F., Panasenco, O., Berger, M.A., Engvold, O., Lin, Y., Pevtsov, A.A., Srivastava, N.: 2012, The build-up to eruptive solar events viewed as the development of chiral systems. In: Rimmele, T.R., Tritschler, A., Wöger, F., Collados Vera, M., Socas-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P.R., Goode, P.R., Knölker, M. (eds.) Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, Astron. Soc. Pacific C.S. 463, 157. ADS. Google Scholar
  53. Marubashi, K.: 1986, Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6, 335. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys. 290, 1371. DOI. ADS. ADSCrossRefGoogle Scholar
  55. McAllister, A.H., Dryer, M., McIntosh, P., Singer, H., Weiss, L.: 1996, A large polar crown coronal mass ejection and a “problem” geomagnetic storm: April 14 – 23, 1994. J. Geophys. Res. 101, 13497. DOI. ADS. ADSCrossRefGoogle Scholar
  56. McAllister, A.H., Hundhausen, A.J., Mackay, D., Priest, E.: 1998, The skew of polar crown X-ray arcades. In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astron. Soc. Pacific C.S. 150, 430. ADS. Google Scholar
  57. McAllister, A.H., Martin, S.F., Crooker, N.U., Lepping, R.P., Fitzenreiter, R.J.: 2001, A test of real-time prediction of magnetic cloud topology and geomagnetic storm occurrence from solar signatures. J. Geophys. Res. 106, 29185. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., Vršnak, B., Biernat, H.K.: 2008, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 26, 3139. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Mulligan, T., Russell, C.T., Luhmann, J.G.: 1998, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett. 25, 2959. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Mumford, S.J., Christe, S., Pérez-Suárez, D., Ireland, J., Shih, A.Y., Inglis, A.R., Liedtke, S., Hewett, R.J., Mayer, F., Hughitt, K., Freij, N., Meszaros, T., Bennett, S.M., Malocha, M., Evans, J., Agrawal, A., Leonard, A.J., Robitaille, T.P., Mampaey, B., Campos-Rozo, J.I., Kirk, M.S. (SunPy Community): 2015, SunPy – Python for solar physics. Comput. Sci. Discov. 8(1), 014009. DOI. ADS. CrossRefGoogle Scholar
  62. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55. DOI. ADS. ADSCrossRefGoogle Scholar
  63. Palmerio, E., Kilpua, E.K.J., Savani, N.P.: 2016, Planar magnetic structures in coronal mass ejection-driven sheath regions. Ann. Geophys. 34, 313. DOI. ADS. ADSCrossRefGoogle Scholar
  64. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  65. Pevtsov, A.A., Balasubramaniam, K.S.: 2003, Helicity patterns on the sun. Adv. Space Res. 32, 1867. DOI. ADS. ADSCrossRefGoogle Scholar
  66. Pevtsov, A.A., Canfield, R.C., McClymont, A.N.: 1997, On the subphotospheric origin of coronal electric currents. Astrophys. J. 481, 973. ADS. ADSCrossRefGoogle Scholar
  67. Pevtsov, A.A., Berger, M.A., Nindos, A., Norton, A.A., van Driel-Gesztelyi, L.: 2014, Magnetic helicity, tilt, and twist. Space Sci. Rev. 186, 285. DOI. ADS. ADSCrossRefGoogle Scholar
  68. Richardson, I.G., Cane, H.V.: 2004a, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104. DOI. ADS. ADSCrossRefGoogle Scholar
  69. Richardson, I.G., Cane, H.V.: 2004b, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31, L18804. DOI. ADS. ADSCrossRefGoogle Scholar
  70. Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI. ADS. ADSCrossRefGoogle Scholar
  71. Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.-A., Savani, N.P., Rouillard, A.P., Démoulin, P., Foullon, C., Opitz, A., Fedorov, A., Jacquey, C.J., Génot, V., Louarn, P., Luhmann, J.G., Russell, C.T., Farrugia, C.J., Galvin, A.B.: 2012, Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J. Geophys. Res. 117, A09101. DOI. ADS. ADSCrossRefGoogle Scholar
  72. Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, L199. DOI. ADS. ADSCrossRefGoogle Scholar
  73. Savani, N.P., Vourlidas, A., Szabo, A., Mays, M.L., Richardson, I.G., Thompson, B.J., Pulkkinen, A., Evans, R., Nieves-Chinchilla, T.: 2015, Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather 13, 374. DOI. ADS. ADSCrossRefGoogle Scholar
  74. Savani, N.P., Vourlidas, A., Richardson, I.G., Szabo, A., Thompson, B.J., Pulkkinen, A., Mays, M.L., Nieves-Chinchilla, T., Bothmer, V.: 2016, Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 2. Geomagnetic response. Space Weather 14. DOI.
  75. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  76. Shen, C., Wang, Y., Gui, B., Ye, P., Wang, S.: 2011, Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Phys. 269, 389. DOI. ADS. ADSCrossRefGoogle Scholar
  77. Shiota, D., Kataoka, R.: 2016, Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14, 56. DOI. ADS. ADSCrossRefGoogle Scholar
  78. Sonnerup, B.U.O., Cahill, L.J. Jr.: 1967, Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171. DOI. ADS. ADSCrossRefGoogle Scholar
  79. Subramanian, P., Dere, K.P.: 2001, Source regions of coronal mass ejections. Astrophys. J. 561, 372. DOI. ADS. ADSCrossRefGoogle Scholar
  80. Thompson, B.J., Cliver, E.W., Nitta, N., Delannée, C., Delaboudinière, J.-P.: 2000, Coronal dimmings and energetic CMEs in April–May 1998. Geophys. Res. Lett. 27, 1431. DOI. ADS. ADSCrossRefGoogle Scholar
  81. Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS. ADSGoogle Scholar
  82. Tripathi, D., Bothmer, V., Cremades, H.: 2004, The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions. Astron. Astrophys. 422, 337. DOI. ADS. ADSCrossRefGoogle Scholar
  83. Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. DOI. ADS. ADSGoogle Scholar
  84. Wang, Y.-M.: 2013, On the strength of the hemispheric rule and the origin of active-region helicity. Astrophys. J. Lett. 775, L46. DOI. ADS. ADSCrossRefGoogle Scholar
  85. Webb, D.F., Cliver, E.W., Crooker, N.U., Cry, O.C.S., Thompson, B.J.: 2000, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J. Geophys. Res. 105, 7491. DOI. ADS. ADSCrossRefGoogle Scholar
  86. Yurchyshyn, V.: 2008, Relationship between EIT posteruption arcades, coronal mass ejections, the coronal neutral line, and magnetic clouds. Astrophys. J. Lett. 675, L49. DOI. ADS. ADSCrossRefGoogle Scholar
  87. Yurchyshyn, V.B., Wang, H., Goode, P.R., Deng, Y.: 2001, Orientation of the magnetic fields in interplanetary flux ropes and solar filaments. Astrophys. J. 563, 381. DOI. ADS. ADSCrossRefGoogle Scholar
  88. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Mullard Space Science LaboratoryUniversity College LondonSurreyUK

Personalised recommendations