Skip to main content
Log in

Grad–Shafranov Reconstruction of Magnetic Clouds: Overview and Improvements

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The Grad–Shafranov reconstruction is a method of estimating the orientation (invariant axis) and cross section of magnetic flux ropes using the data from a single spacecraft. It can be applied to various magnetic structures such as magnetic clouds (MCs) and flux ropes embedded in the magnetopause and in the solar wind. We develop a number of improvements of this technique and show some examples of the reconstruction procedure of interplanetary coronal mass ejections (ICMEs) observed at 1 AU by the STEREO, Wind, and ACE spacecraft during the minimum following Solar Cycle 23. The analysis is conducted not only for ideal localized ICME events but also for non-trivial cases of magnetic clouds in fast solar wind. The Grad–Shafranov reconstruction gives reasonable results for the sample events, although it possesses certain limitations, which need to be taken into account during the interpretation of the model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93(A7), 7217 – 7224. doi: 10.1029/JA093iA07p07217 .

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations. J. Geophys. Res. 86(A8), 6673 – 6684.

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Richardson, I.G., Burlaga, L.F., Lepping, R.P., Osherovich, V.A.: 1993, Simultaneous observations of solar MeV particles in a magnetic cloud and in the Earth’s northern tail lobe: Implications for the global field line topology of magnetic clouds and for the entry of solar particles into the magnetosphere during cloud passage. J. Geophys. Res. 98(A9), 15497 – 15507. doi: 10.1029/93JA01462 .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D., Smith, E.J.: 1987, Bidirectional solar wind electron heat flux events. Geophys. Res. Lett. 92(A8), 8519 – 8535. doi: 10.1029/JA092iA08p08519 .

    Google Scholar 

  • Hasegawa, H., Nakamura, R., Fujimoto, M., Sergeev, V.A., Lucek, E.A., Réme, H., Khotyaintsev, Y.: 2007, Reconstruction of a bipolar magnetic signature in an earthward jet in the tail: Flux rope or 3D guide-field reconnection? J. Geophys. Res. 112. doi: 10.1029/2007JA012492 .

  • Hau, L.N., Sonnerup, B.U.Ö.: 1999, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104(A4), 6899 – 6917. doi: 10.1029/1999JA900002 .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29, 1637 – 1640. doi: 10.1029/2001GL013875 .

    Article  ADS  Google Scholar 

  • Holoborodko, P.: 2008, Smooth noise-robust differentiators. http://www.holoborodko.com/pavel/?page_id=245 .

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. 107, 1142. doi: 10.1029/2001JA000293 .

    Article  Google Scholar 

  • Huttunen, K.E.J., Koskinen, H.E.J., Schwenn, R.: 2002, Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. 107(A7), 1121 – 1128. doi: 10.1029/2001JA900171 .

    Article  Google Scholar 

  • Jian, L., Russel, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393 – 436. doi: 10.1007/s11207-006-0133-2 .

    Article  ADS  Google Scholar 

  • Khrabrov, A.V., Sonnerup, B.U.Ö.: 1998, Analysis Methods for Multi-Spacecraft Data, ESA, Noordwijk, 221 – 248. Chapter 9.

    Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95(A8), 11957 – 11965. doi: 10.1029/JA095iA08p11957 .

    Article  ADS  Google Scholar 

  • Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 25, 2453 – 2477. doi: 10.5194/angeo-25-2453-2007 .

    Article  ADS  Google Scholar 

  • Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., Vršnak, B., Biernat, H.K.: 2008, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 26, 3139 – 3152. doi: 10.5194/angeo-26-3139-2008 .

    Article  ADS  Google Scholar 

  • Mulligan, T., Russel, C.T.: 2001, Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res. 106(A6), 10581 – 10596. doi: 10.1029/2000JA900170 .

    Article  ADS  Google Scholar 

  • Owens, M.J.: 2008, Combining remote and in-situ observations of coronal mass ejections to better constrain magnetic cloud reconstruction. J. Geophys. Res. 113, 12102. doi: 10.1029/2008JA013589 .

    Article  Google Scholar 

  • Owens, M.J., Merkin, V.G., Riley, P.: 2006, A kinematically distorted flux rope model for magnetic clouds. J. Geophys. Res. 111, A03104. doi: 10.1029/2005JA011460 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189 – 237. doi: 10.1007/s11207-010-9568-6 .

    Article  ADS  Google Scholar 

  • Riley, P., Crooker, N.U.: 2004, Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600(2), 1035. doi: 10.1086/379974 .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M., Cid, C., Hu, Q., Lepping, R., Lynch, B., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: A comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321 – 1331. doi: 10.1016/j.jastp.2004.03.019 .

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31 – 43. doi: 10.1007/s11214-006-9010-4 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Isavnin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isavnin, A., Kilpua, E.K.J. & Koskinen, H.E.J. Grad–Shafranov Reconstruction of Magnetic Clouds: Overview and Improvements. Sol Phys 273, 205–219 (2011). https://doi.org/10.1007/s11207-011-9845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9845-z

Keywords

Navigation