Skip to main content
Log in

Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Bipolar active regions (ARs) are thought to be formed by twisted flux tubes, as the presence of such twist is theoretically required for a cohesive rise through the whole convective zone. We use longitudinal magnetograms to demonstrate that a clear signature of a global magnetic twist is present, particularly, during the emergence phase when the AR is forming in a much weaker pre-existing magnetic field environment. The twist is characterised by the presence of elongated polarities, called “magnetic tongues”, which originate from the azimuthal magnetic field component. The tongues first extend in size before retracting when the maximum magnetic flux is reached. This implies an apparent rotation of the magnetic bipole. Using a simple half-torus model of an emerging twisted flux tube having a uniform twist profile, we derive how the direction of the polarity inversion line and the elongation of the tongues depend on the global twist in the flux rope. Using a sample of 40 ARs, we verify that the helicity sign, determined from the magnetic polarity distribution pattern, is consistent with the sign derived from the photospheric helicity flux computed from magnetogram time series, as well as from other proxies such as sheared coronal loops, sigmoids, flare ribbons and/or the associated magnetic cloud observed in situ at 1 AU. The evolution of the tongues observed in emerging ARs is also closely similar to the evolution found in recent MHD numerical simulations. We also found that the elongation of the tongue formed by the leading magnetic polarity is significantly larger than that of the following polarity. This newly discovered asymmetry is consistent with an asymmetric Ω-loop emergence, trailing the solar rotation, which was proposed earlier to explain other asymmetries in bipolar ARs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbett, W.P., Fisher, G.H., Fan, Y.: 2001, The effects of rotation on the evolution of rising omega loops in a stratified model convection zone. Astrophys. J. 546, 1194 – 1203. doi:10.1086/318320.

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A.W.: 2010, Flux emergence and coronal eruption. Astron. Astrophys. 514, A56. doi:10.1051/0004-6361/200913502.

    Article  ADS  Google Scholar 

  • Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., O’Shea, E.: 2004, Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047 – 1063. doi:10.1051/0004-6361:20035934.

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A.W., Savcheva, A., Golub, L., Deluca, E.: 2009, On the structure and evolution of complexity in sigmoids: a flux emergence model. Astrophys. J. 691, 1276 – 1291. doi:10.1088/0004-637X/691/2/1276.

    Article  ADS  Google Scholar 

  • Asai, A., Shibata, K., Ishii, T.T., Oka, M., Kataoka, R., Fujiki, K., Gopalswamy, N.: 2009, Evolution of the anemone AR NOAA 10798 and the related geo-effective flares and CMEs. J. Geophys. Res. 114, A00A21. doi:10.1029/2008JA013291.

    Article  Google Scholar 

  • Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P.: 2007, Coronal “wave”: magnetic footprint of a coronal mass ejection? Astrophys. J. Lett. 656, 101 – 104. doi:10.1086/512854.

    Article  ADS  Google Scholar 

  • Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314 – 333. doi:10.1088/0004-637X/708/1/314.

    Article  ADS  Google Scholar 

  • Berdichevsky, D.B., Farrugia, C.J., Thompson, B.J., Lepping, R.P., Reames, D.V., Kaiser, M.L., Steinberg, J.T., Plunkett, S.P., Michels, D.J.: 2002, Halo-coronal mass ejections near the 23rd solar minimum: Lift-off, inner heliosphere, and in situ (1 AU) signatures. Ann. Geophys. 20, 891 – 916. doi:10.5194/angeo-20-891-2002.

    Article  ADS  Google Scholar 

  • Burnette, A.B., Canfield, R.C., Pevtsov, A.A.: 2004, Photospheric and coronal currents in solar active regions. Astrophys. J. 606, 565 – 570. doi:10.1086/382775.

    Article  ADS  Google Scholar 

  • Caligari, P., Moreno-Insertis, F., Schussler, M.: 1995, Emerging flux tubes in the solar convection zone. 1: Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886 – 902. doi:10.1086/175410.

    Article  ADS  Google Scholar 

  • Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627 – 630. doi:10.1029/1999GL900105.

    Article  ADS  Google Scholar 

  • Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., Li, H.: 2009, Evidence for a pre-eruptive twisted flux rope using the THEMIS vector magnetograph. Astrophys. J. Lett. 693, 27 – 30. doi:10.1088/0004-637X/693/1/L27.

    Article  ADS  Google Scholar 

  • Chae, J.: 2001, Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints. Astrophys. J. Lett. 560, 95 – 98. doi:10.1086/324173.

    Article  ADS  Google Scholar 

  • Chae, J., Moon, Y.J., Park, Y.D.: 2004, Determination of magnetic helicity content of solar active regions from SOHO/MDI magnetograms. Solar Phys. 223, 39 – 55. doi:10.1007/s11207-004-0938-9.

    Article  ADS  Google Scholar 

  • Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258, 53 – 67. doi:10.1007/s11207-009-9392-z.

    Article  ADS  Google Scholar 

  • Chandra, R., Pariat, E., Schmieder, B., Mandrini, C.H., Uddin, W.: 2010, How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Solar Phys. 261, 127 – 148. doi:10.1007/s11207-009-9470-2.

    Article  ADS  Google Scholar 

  • Cheung, M., Schüssler, M., Moreno-Insertis, F.: 2005, 3D magneto-convection and flux emergence in the photosphere. In: Innes, D.E., Lagg, A., Solanki, S.A. (eds.) Chromospheric and Coronal Magnetic Fields, ESA SP-596, paper 54.1 (on CDROM).

    Google Scholar 

  • Cheung, M.C.M., Moreno-Insertis, F., Schüssler, M.: 2006, Moving magnetic tubes: fragmentation, vortex streets and the limit of the approximation of thin flux tubes. Astron. Astrophys. 451, 303 – 317. doi:10.1051/0004-6361:20054499.

    Article  ADS  MATH  Google Scholar 

  • Cheung, M.C.M., Schüssler, M., Tarbell, T.D., Title, A.M.: 2008, Solar surface emerging flux regions: A comparative study of radiative MHD modeling and Hinode SOT observations. Astrophys. J. 687, 1373 – 1387. doi:10.1086/591245.

    Article  ADS  Google Scholar 

  • Cristiani, G., Martinez, G., Mandrini, C.H., Giménez de Castro, C.G., da Silva, C.W., Rovira, M.G., Kaufmann, P.: 2007, Spatial characterisation of a flare using radio observations and magnetic field topology. Solar Phys. 240, 271 – 281. doi:10.1007/s11207-006-0337-5.

    Article  ADS  Google Scholar 

  • Cristiani, G., Giménez de Castro, C.G., Mandrini, C.H., Machado, M.E., Silva, I.D.B.E., Kaufmann, P., Rovira, M.G.: 2008, A solar burst with a spectral component observed only above 100 GHz during an M class flare. Astron. Astrophys. 492, 215 – 222. doi:10.1051/0004-6361:200810367.

    Article  ADS  Google Scholar 

  • Delaboudiniére, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312. doi:10.1007/BF00733432.

    Article  ADS  Google Scholar 

  • Démoulin, P., Pariat, E.: 2009, Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43, 1013 – 1031. doi:10.1016/j.asr.2008.12.004.

    Article  ADS  Google Scholar 

  • Démoulin, P., Priest, E.R., Lonie, D.P.: 1996, Three-dimensional magnetic reconnection without null points 2. Application to twisted flux tubes. J. Geophys. Res. 101, 7631 – 7646. doi:10.1029/95JA03558.

    Article  ADS  Google Scholar 

  • Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650 – 665. doi:10.1051/0004-6361:20011634.

    Article  ADS  Google Scholar 

  • Emonet, T., Moreno-Insertis, F.: 1998, The physics of twisted magnetic tubes rising in a stratified medium: two-dimensional results. Astrophys. J. 492, 804 – 821. doi:10.1086/305074.

    Article  ADS  Google Scholar 

  • Fan, Y.: 2008, The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective envelope. Astrophys. J. 676, 680 – 697. doi:10.1086/527317.

    Article  ADS  Google Scholar 

  • Fan, Y.: 2009, The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529 – 1542. doi:10.1088/0004-637X/697/2/1529.

    Article  ADS  Google Scholar 

  • Fan, Y., Fisher, G.H., Deluca, E.E.: 1993, The origin of morphological asymmetries in bipolar active regions. Astrophys. J. 405, 390 – 401. doi:10.1086/172370.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., LaBonte, B.J.: 2006, Reconstruction of an inductive velocity field vector from Doppler motions and a pair of solar vector magnetograms. Astrophys. J. 636, 475 – 495. doi:10.1086/497978.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fan, Y., Mandrini, C., Fisher, G., Démoulin, P.: 2004, Observational consequences of a magnetic flux rope emerging into the corona. Astrophys. J. 617, 600 – 613. doi:10.1086/425294.

    Article  ADS  Google Scholar 

  • Glover, A., Ranns, N.D.R., Harra, L.K., Culhane, J.L.: 2000, The onset and association of CMEs with sigmoidal active regions. Geophys. Res. Lett. 27, 2161 – 2164. doi:10.1029/2000GL000018.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Kaiser, M.L., Sato, J., Pick, M.: 2000, Shock wave and EUV transient during a flare. In: Ramaty, R., Mandzhavidze, N. (eds.) High Energy Solar Physics Workshop – Anticipating HESSI, ASP Conf. Ser. 206, 351 – 354.

    Google Scholar 

  • Green, L.M., Kliem, B.: 2009, Flux rope formation preceding coronal mass ejection onset. Astrophys. J. Lett. 700, 83 – 87. doi:10.1088/0004-637X/700/2/L83.

    Article  ADS  Google Scholar 

  • Green, L.M., López Fuentes, M.C., Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Culhane, J.L.: 2002, The magnetic helicity budget of a CME-prolific active region. Solar Phys. 208, 43 – 68. doi:10.1023/A:1019658520033.

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365 – 391. doi:10.1007/s11207-007-9061-z.

    Article  ADS  Google Scholar 

  • Hood, A.W., Archontis, V., Galsgaard, K., Moreno-Insertis, F.: 2009, The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999 – 1011. doi:10.1051/0004-6361/200912189.

    Article  ADS  Google Scholar 

  • Jeong, H., Chae, J.: 2007, Magnetic helicity injection in active regions. Astrophys. J. 671, 1022 – 1033. doi:10.1086/522666.

    Article  ADS  Google Scholar 

  • Jouve, L., Brun, A.S.: 2009, Three-dimensional nonlinear evolution of a magnetic flux tube in a spherical shell: Influence of turbulent convection and associated mean flows. Astrophys. J. 701, 1300 – 1322. doi:10.1088/0004-637X/701/2/1300.

    Article  ADS  Google Scholar 

  • LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955 – 963. doi:10.1086/522682.

    Article  ADS  Google Scholar 

  • Leamon, R.J., Canfield, R.C., Pevtsov, A.A.: 2002, Properties of magnetic clouds and geomagnetic storms associated with eruption of coronal sigmoids. J. Geophys. Res. 107(A9), SSH1-1. doi:10.1029/2001JA000313.

    Article  Google Scholar 

  • Li, H., Schmieder, B., Song, M.T., Bommier, V.: 2007, Interaction of magnetic field systems leading to an X1.7 flare due to large-scale flux tube emergence. Astron. Astrophys. 475, 1081 – 1091. doi:10.1051/0004-6361:20077500.

    Article  ADS  Google Scholar 

  • Liu, J., Zhang, H.: 2006, The magnetic field, horizontal motion and helicity in a fast emerging flux region which eventually forms a delta spot. Solar Phys. 234, 21 – 40. doi:10.1007/s11207-006-2091-0.

    Article  ADS  Google Scholar 

  • Liu, J., Zhang, Y., Zhang, H.: 2008, Relationship between powerful flares and dynamic evolution of the magnetic field at the solar surface. Solar Phys. 248, 67 – 84. doi:10.1007/s11207-008-9149-0.

    Article  ADS  Google Scholar 

  • Longcope, D.W., Welsch, B.T.: 2000, A model for the emergence of a twisted magnetic flux tube. Astrophys. J. 545, 1089 – 1100. doi:10.1086/317846.

    Article  ADS  Google Scholar 

  • López Fuentes, M.C., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2000, The counterkink rotation of a non-Hale active region. Astrophys. J. 544, 540 – 549. doi:10.1086/317180.

    Article  ADS  Google Scholar 

  • López Fuentes, M.C., Démoulin, P., Mandrini, C.H., Pevtsov, A.A., van Driel-Gesztelyi, L.: 2003, Magnetic twist and writhe of active regions. On the origin of deformed flux tubes. Astron. Astrophys. 397, 305 – 318. doi:10.1051/0004-6361:20021487.

    Article  ADS  Google Scholar 

  • Luoni, M.L., Mandrini, C.H., Dasso, S., Démoulin, P., Van Driel-Gesztelyi, L.: 2007, From the photosphere to the interplanetary medium: The magnetic helicity sign from observations. Bol. Asoc. Argent. Astron. 50, 43 – 46.

    ADS  Google Scholar 

  • MacTaggart, D., Hood, A.W.: 2009, On the emergence of toroidal flux tubes: general dynamics and comparisons with the cylinder model. Astron. Astrophys. 507, 995 – 1004. doi:10.1051/0004-6361/200912930.

    Article  ADS  MATH  Google Scholar 

  • Magara, T.: 2001, Dynamics of emerging flux tubes in the Sun. Astrophys. J. 549, 608 – 628. doi:10.1086/319073.

    Article  ADS  Google Scholar 

  • Magara, T.: 2004, A model for dynamic evolution of emerging magnetic fields in the Sun. Astrophys. J. 605, 480 – 492. doi:10.1086/382148.

    Article  ADS  Google Scholar 

  • Magara, T., Longcope, D.W.: 2003, Injection of magnetic energy and magnetic helicity into the solar atmosphere by an emerging magnetic flux tube. Astrophys. J. 586, 630 – 649. doi:10.1086/367611.

    Article  ADS  Google Scholar 

  • Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588 – 596. doi:10.1086/421516.

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Green, L., López Fuentes, M.C.: 2004, Magnetic helicity budget of solar-active regions from the photosphere to magnetic clouds. Astrophys. Space Sci. 290, 319 – 344. doi:10.1023/B:ASTR.0000032533.31817.0e.

    Article  ADS  MATH  Google Scholar 

  • Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725 – 740. doi:10.1051/0004-6361:20041079.

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833 – 848. doi:10.1086/320559.

    Article  ADS  Google Scholar 

  • Moreno-Insertis, F., Caligari, P., Schuessler, M.: 1994, Active region asymmetry as a result of the rise of magnetic flux tubes. Solar Phys. 153, 449 – 452. doi:10.1007/BF00712518.

    Article  ADS  Google Scholar 

  • Murray, M.J., Hood, A.W.: 2008, Emerging flux tubes from the solar interior into the atmosphere: Effects of non-constant twist. Astron. Astrophys. 479, 567 – 577. doi:10.1051/0004-6361:20078852.

    Article  ADS  Google Scholar 

  • Murray, M.J., Hood, A.W., Moreno-Insertis, F., Galsgaard, K., Archontis, V.: 2006, 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron. Astrophys. 460, 909 – 923. doi:10.1051/0004-6361:20065950.

    Article  ADS  Google Scholar 

  • Nindos, A., Zhang, J., Zhang, H.: 2003, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. 594, 1033 – 1048. doi:10.1086/377126.

    Article  ADS  Google Scholar 

  • Pariat, E., Démoulin, P., Berger, M.A.: 2005, Photospheric flux density of magnetic helicity. Astron. Astrophys. 439, 1191 – 1203. doi:10.1051/0004-6361:20052663.

    Article  ADS  Google Scholar 

  • Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M.K., Rust, D.M., Bernasconi, P.N.: 2004, Resistive emergence of undulatory flux tubes. Astrophys. J. 614, 1099 – 1112. doi:10.1086/423891.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1979, Sunspots and the physics of magnetic flux tubes. IX – Umbral dots and longitudinal overstability. Astrophys. J. 234, 333 – 347. doi:10.1086/157501.

    Article  ADS  Google Scholar 

  • Pevtsov, A.A.: 2002, Sinuous coronal loops at the Sun. In: Martens, P.C.H., Cauffman, D. (eds.) Multi-Wavelength Observations of Coronal Structure and Dynamics, COSPAR Colloq. Ser. 13, 125 – 134.

    Chapter  Google Scholar 

  • Pevtsov, A.A., Canfield, R.C., McClymont, A.N.: 1997, On the subphotospheric origin of coronal electric currents. Astrophys. J. 481, 973 – 977. doi:10.1086/304065.

    Article  ADS  Google Scholar 

  • Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, 199 – 203. doi:10.1086/310118.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi:10.1007/BF00733429.

    Article  ADS  Google Scholar 

  • Strous, L.H., Scharmer, G., Tarbell, T.D., Title, A.M., Zwaan, C.: 1996, Phenomena in an emerging active region. I. Horizontal dynamics. Astron. Astrophys. 306, 947 – 959.

    ADS  Google Scholar 

  • Tian, L., Alexander, D.: 2006, Role of sunspot and sunspot-group rotation in driving sigmoidal active region eruptions. Solar Phys. 233, 29 – 43. doi:10.1007/s11207-006-2505-z.

    Article  ADS  Google Scholar 

  • Tian, L., Alexander, D.: 2008, On the origin of magnetic helicity in the solar corona. Astrophys. J. 673, 532 – 543. doi:10.1086/524129.

    Article  ADS  Google Scholar 

  • Tian, L., Alexander, D.: 2009, Asymmetry of helicity injection flux in emerging active regions. Astrophys. J. 695, 1012 – 1023. doi:10.1088/0004-637X/695/2/1012.

    Article  ADS  Google Scholar 

  • Tian, L., Alexander, D., Nightingale, R.: 2008, Origins of coronal energy and helicity in NOAA 10030. Astrophys. J. 684, 747 – 756. doi:10.1086/589492.

    Article  ADS  Google Scholar 

  • Tian, L., Liu, Y., Yang, J., Alexander, D.: 2005b, The role of the kink instability of a long-lived active region AR 9604. Solar Phys. 229, 237 – 253. doi:10.1007/s11207-005-6884-3.

    Article  ADS  Google Scholar 

  • Tian, L., Démoulin, P., Alexander, D., Zhu, C.: 2011, On asymmetry of magnetic helicity in emerging active regions: High-resolution observations. Astrophys. J. 727, 28. doi:10.1088/0004-637X/727/1/28.

    Article  ADS  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707 – 720.

    ADS  Google Scholar 

  • Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., et al.: 1991, The soft X-ray telescope for the SOLAR-A mission. Solar Phys. 136, 37 – 67. doi:10.1007/BF00151694.

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Petrovay, K.: 1990, Asymmetric flux loops in active regions. Solar Phys. 126, 285 – 298. doi:10.1007/BF00153051.

    Article  ADS  Google Scholar 

  • Wu, G.P., Huang, G.L., Tang, Y.H., Xu, A.A.: 2005, The observational evidence on the loop interaction in a flare CME event on April 15, 1998. Solar Phys. 227, 327 – 337. doi:10.1007/s11207-005-2512-5.

    Article  ADS  Google Scholar 

  • Yamamoto, T.T., Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2005, Magnetic helicity injection and sigmoidal coronal loops. Astrophys. J. 624, 1072 – 1079. doi:10.1086/429363.

    Article  ADS  Google Scholar 

  • Yang, S., Büchner, J., Zhang, H.: 2009a, Magnetic helicity exchange between neighboring active regions. Astrophys. J. Lett. 695, 25 – 30. doi:10.1088/0004-637X/695/1/L25.

    Article  ADS  Google Scholar 

  • Yang, S., Zhang, H., Büchner, J.: 2009b, Magnetic helicity accumulation and tilt angle evolution of newly emerging active regions. Astron. Astrophys. 502, 333 – 340. doi:10.1051/0004-6361/200810032.

    Article  ADS  MATH  Google Scholar 

  • Zwaan, C.: 1985, The emergence of magnetic flux. Solar Phys. 100, 397 – 414. doi:10.1007/BF00158438.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Luoni.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MPG 1.068 kb).

(MPG 1.786 kb).

(MPG 2.021 kb).

(MPG 1.307 kb).

(MPG 1.386 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luoni, M.L., Démoulin, P., Mandrini, C.H. et al. Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues. Sol Phys 270, 45–74 (2011). https://doi.org/10.1007/s11207-011-9731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9731-8

Keywords

Navigation