Skip to main content
Log in

Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Pt/γ–Al2O3 catalysts made by fast and simple electrochemical dispersion method were characterized using X-ray absorption spectroscopy, CO chemisorption, transmission electron microscopy and X-ray diffraction, and compared with an impregnated catalyst with respect to oxidation of CO and NO. A combination of techniques revealed average particle sizes of 3–4 nm for 0.81–3.8 wt% Pt/γ–Al2O3 catalysts. Electrochemically prepared materials demonstrated catalytic activity comparable to that of conventional impregnated catalyst and reasonable stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acres GJK (1970) Platinum catalysts for diesel engine exhaust purification. Platin Met Rev 14:78–85

    CAS  Google Scholar 

  2. Johnson TV (2009) Review of diesel emissions and control. Int J Engine Res 10:275–285. doi:10.1243/14680874jer04009

    Article  CAS  Google Scholar 

  3. Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B Environ 146:1–11. doi:10.1016/j.apcatb.2013.02.033

    Article  CAS  Google Scholar 

  4. Nova I, Ciardelli C, Tronconi E et al (2006) NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction. Catal Today 114:3–12. doi:10.1016/j.cattod.2006.02.012

    Article  CAS  Google Scholar 

  5. Boubnov A, Dahl S, Johnson E et al (2012) Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions. Appl Catal B Environ 126:315–325. doi:10.1016/j.apcatb.2012.07.029

    Article  CAS  Google Scholar 

  6. Gracia FJ, Bollmann L, Wolf EE et al (2003) In situ FTIR, EXAFS, and activity studies of the effect of crystallite size on silica-supported Pt oxidation catalysts. J Catal 220:382–391. doi:10.1016/S0021-9517(03)00296-3

    Article  CAS  Google Scholar 

  7. Szabó A, Henderson MA, Yates JT (1992) Oxidation of CO by oxygen on a stepped platinum surface: identification of the reaction site. J Chem Phys 96:6191–6202. doi:10.1063/1.462636

    Article  Google Scholar 

  8. Yang J, Tschamber V, Habermacher D et al (2008) Effect of sintering on the catalytic activity of a Pt based catalyst for CO oxidation: experiments and modeling. Appl Catal B Environ 83:229–239. doi:10.1016/j.apcatb.2008.02.018

    Article  CAS  Google Scholar 

  9. Auvray X, Pingel T, Olsson E, Olsson L (2013) The effect gas composition during thermal aging on the dispersion and NO oxidation activity over Pt/Al2O3 catalysts. Appl Catal B Environ 129:517–527. doi:10.1016/j.apcatb.2012.10.002

    Article  CAS  Google Scholar 

  10. Irfan MF, Goo JH, Kim SD, Hong SC (2007) Effect of CO on NO oxidation over platinum based catalysts for hybrid fast SCR process. Chemosphere 66:54–59. doi:10.1016/j.chemosphere.2006.05.044

    Article  CAS  Google Scholar 

  11. Hu L, Boateng KA, Hill JM (2006) Sol–gel synthesis of Pt/Al2O3 catalysts: effect of Pt precursor and calcination procedure on Pt dispersion. J Mol Catal Chem 259:51–60. doi:10.1016/j.molcata.2006.06.018

    Article  CAS  Google Scholar 

  12. Reyes P, Oportus M, Pecchi G et al (1996) Influence of the nature of the platinum precursor on the surface properties and catalytic activity of alumina-supported catalysts. Catal Lett 37:193–197. doi:10.1007/BF00807753

    Article  CAS  Google Scholar 

  13. Schmitz PJ, Kudla RJ, Drews AR et al (2006) NO oxidation over supported Pt: impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation. Appl Catal B Environ 67:246–256. doi:10.1016/j.apcatb.2006.05.012

    Article  CAS  Google Scholar 

  14. McLean M, Mykura H (1966) The temperature dependence of the surface energy anisotropy of platinum. Surf Sci 5:466–481. doi:10.1016/0039-6028(66)90042-2

    Article  CAS  Google Scholar 

  15. Cabié M, Giorgio S, Henry CR et al (2010) Direct observation of the reversible changes of the morphology of Pt nanoparticles under gas environment. J Phys Chem C 114:2160–2163. doi:10.1021/jp906721g

    Article  CAS  Google Scholar 

  16. Yoshida H, Matsuura K, Kuwauchi Y et al (2011) Temperature-dependent change in shape of platinum nanoparticles supported on CeO 2 during catalytic reactions. Appl Phys Express 4:065001. doi:10.1143/APEX.4.065001

    Article  CAS  Google Scholar 

  17. Hofmann G, Rochet A, Ogel E et al (2015) Aging of a Pt/Al2O3 exhaust gas catalyst monitored by quasi in situ X-ray micro computed tomography. RSC Adv 5:6893–6905. doi:10.1039/C4RA14007A

    Article  CAS  Google Scholar 

  18. Simonsen SB, Chorkendorff I, Dahl S et al (2012) Effect of particle morphology on the ripening of supported Pt nanoparticles. J Phys Chem C 116:5646–5653. doi:10.1021/jp2098262

    Article  CAS  Google Scholar 

  19. Aramendía MA, Benítez JA, Borau V et al (1999) Study of MgO and Pt/MgO systems by XRD, TPR, and 1 H MAS NMR. Langmuir 15:1192–1197. doi:10.1021/la9808972

    Article  Google Scholar 

  20. Regalbuto JR, Navada A, Shadid S et al (1999) An experimental verification of the physical nature of Pt adsorption onto alumina. J Catal 184:335–348. doi:10.1006/jcat.1999.2471

    Article  CAS  Google Scholar 

  21. Shelimov B, Lambert J-F, Che M, Didillon B (1999) Initial steps of the alumina-supported platinum catalyst preparation: a molecular study by 195Pt NMR, UV–visible, EXAFS, and raman spectroscopy. J Catal 185:462–478. doi:10.1006/jcat.1999.2527

    Article  CAS  Google Scholar 

  22. Oudenhuijzen MK, Kooyman PJ, Tappel B et al (2002) Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2 impregnated with [Pt2+(NH3)4](NO3 )2: a combination of HRTEM, mass spectrometry, and quick EXAFS. J Catal 205:135–146. doi:10.1006/jcat.2001.3433

    Article  CAS  Google Scholar 

  23. Mojet BL, Ramaker DE, Miller JT, Koningsberger DC (1999) Observation of a hydrogen-induced shape resonance on Pt/LTL catalysts and its relation with support acidity/alkalinity. Catal Lett 62:15–20. doi:10.1023/A:1019018215806

    Article  CAS  Google Scholar 

  24. Gracia FJ, Miller JT, Kropf AJ, Wolf EE (2002) Kinetics, FTIR, and controlled atmosphere EXAFS study of the effect of chlorine on Pt-supported catalysts during oxidation reactions. J Catal 209:341–354. doi:10.1006/jcat.2002.3601

    Article  CAS  Google Scholar 

  25. Gololobov AM, Bekk IE, Bragina GO et al (2009) Platinum nanoparticle size effect on specific catalytic activity in n-alkane deep oxidation: dependence on the chain length of the paraffin. Kinet Catal 50:830–836. doi:10.1134/S0023158409060068

    Article  CAS  Google Scholar 

  26. Boorse R, Stark WJ, Mädler L et al (2003) Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. J Catal 213:296–304. doi:10.1016/S0021-9517(02)00082-9

    Article  Google Scholar 

  27. Hannemann S, Grunwaldt J-D, Lienemann P et al (2007) Combination of flame synthesis and high-throughput experimentation: the preparation of alumina-supported noble metal particles and their application in the partial oxidation of methane. Appl Catal Gen 316:226–239. doi:10.1016/j.apcata.2006.09.034

    Article  CAS  Google Scholar 

  28. Manasilp A, Gulari E (2002) Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl Catal B Environ 37:17–25. doi:10.1016/S0926-3373(01)00319-8

    Article  CAS  Google Scholar 

  29. Li J, Hao J, Fu L et al (2004) Cooperation of Pt/Al2O3 and In/Al2O3 catalysts for NO reduction by propene in lean burn condition. Appl Catal Gen 265:43–52. doi:10.1016/j.apcata.2004.01.001

    Article  CAS  Google Scholar 

  30. Djokić SS, Cavallotti PL (2010) Electroless deposition: theory and applications. In: Djokić SS (ed) Electrodeposition. Springer, New York, pp 251–289

    Chapter  Google Scholar 

  31. Rao C, Trivedi D (2005) Chemical and electrochemical depositions of platinum group metals and their applications. Coord Chem Rev 249:613–631. doi:10.1016/j.ccr.2004.08.015

    Article  CAS  Google Scholar 

  32. Leontyev I, Kuriganova A, Kudryavtsev Y et al (2012) New life of a forgotten method: electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl Catal Gen 431–432:120–125. doi:10.1016/j.apcata.2012.04.025

    Article  CAS  Google Scholar 

  33. Smirnova NV, Kuriganova AB, Leont’eva DV et al (2013) Structural and electrocatalytic properties of Pt/C and Pt-Ni/C catalysts prepared by electrochemical dispersion. Kinet Catal 54:255–262. doi:10.1134/S0023158413020146

    Article  CAS  Google Scholar 

  34. Boubnov A, Gänzler A, Conrad S et al (2013) Oscillatory CO oxidation over Pt/Al2O3 catalysts studied by in situ XAS and DRIFTS. Top Catal 56:333–338. doi:10.1007/s11244-013-9976-6

    Article  CAS  Google Scholar 

  35. Karakaya C, Deutschmann O (2012) A simple method for CO chemisorption studies under continuous flow: adsorption and desorption behavior of Pt/Al2O3 catalysts. Appl Catal Gen 445–446:221–230. doi:10.1016/j.apcata.2012.08.022

    Article  CAS  Google Scholar 

  36. Spenadel L, Boudart M (1960) Dispersion of platinum on supported catalysts. J Phys Chem 64:204–207. doi:10.1021/j100831a004

    Article  CAS  Google Scholar 

  37. Grunwaldt J-D, van Vegten N, Baiker A (2007) Insight into the structure of supported palladium catalysts during the total oxidation of methane. Chem Commun 44:4635–4637. doi:10.1039/b710222d

    Article  CAS  Google Scholar 

  38. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  39. Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72:621–654. doi:10.1103/RevModPhys.72.621

    Article  CAS  Google Scholar 

  40. Haneda M, Watanabe T, Kamiuchi N, Ozawa M (2013) Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Appl Catal B Environ 142–143:8–14. doi:10.1016/j.apcatb.2013.04.055

    Article  CAS  Google Scholar 

  41. Siegel S, Hoekstra HR, Tani BS (1969) The crystal structure of beta-platinum dioxide. J Inorg Nucl Chem 31:3803–3807. doi:10.1016/0022-1902(69)80300-3

    Article  CAS  Google Scholar 

  42. Zhou RS, Snyder RL (1991) Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta Crystallogr Sect B 47:617–630. doi:10.1107/S0108768191002719

    Article  Google Scholar 

  43. Owen EA, Yates EL (1933) XLI. Precision measurements of crystal parameters. Lond Edinb Dublin Philos Mag J Sci 15:472–488. doi:10.1080/14786443309462199

    Article  CAS  Google Scholar 

  44. Abid M, Paul-Boncour V, Touroude R (2006) Pt/CeO2 catalysts in crotonaldehyde hydrogenation: selectivity, metal particle size and SMSI states. Appl Catal Gen 297:48–59. doi:10.1016/j.apcata.2005.08.048

    Article  CAS  Google Scholar 

  45. Naresh D, Kumar VP, Harisekhar M et al (2014) Characterization and functionalities of Pd/hydrotalcite catalysts. Appl Surf Sci 314:199–207. doi:10.1016/j.apsusc.2014.06.156

    Article  CAS  Google Scholar 

  46. Venderbosch RH, Prins W, van Swaaij WPM (1998) Platinum catalyzed oxidation of carbon monoxide as a model reaction in mass transfer measurements. Chem Eng Sci 53:3355–3366. doi:10.1016/S0009-2509(98)00151-1

    Article  CAS  Google Scholar 

  47. Hauptmann W, Drochner A, Vogel H et al (2007) Global kinetic models for the oxidation of NO on platinum under lean conditions. Top Catal 42–43:157–160. doi:10.1007/s11244-007-0170-6

    Article  CAS  Google Scholar 

  48. Matam SK, Kondratenko EV, Aguirre MH et al (2013) The impact of aging environment on the evolution of Al2O3 supported Pt nanoparticles and their NO oxidation activity. Appl Catal B Environ 129:214–224. doi:10.1016/j.apcatb.2012.09.018

    Article  CAS  Google Scholar 

  49. Putna ES, Vohs JM, Gorte RJ (1997) Oxygen desorption from α-Al2O3 (0001) supported Rh, Pt and Pd particles. Surf Sci 391:L1178–L1182. doi:10.1016/S0039-6028(97)00611-0

    Article  CAS  Google Scholar 

  50. Oran U, Uner D (2004) Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts. Appl Catal B Environ 54:183–191. doi:10.1016/j.apcatb.2004.06.011

    Article  CAS  Google Scholar 

  51. Job N, Chatenet M, Berthon-Fabry S et al (2013) Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: avoid chloride-based Pt salts! J Power Sour 240:294–305. doi:10.1016/j.jpowsour.2013.03.188

    Article  CAS  Google Scholar 

  52. Fogel S, Doronkin DE, Gabrielsson P, Dahl S (2012) Optimisation of Ag loading and alumina characteristics to give sulphur-tolerant Ag/Al2O3 catalyst for H2-assisted NH3-SCR of NOx. Appl Catal B Environ 125:457–464. doi:10.1016/j.apcatb.2012.06.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank ANKA synchrotron radiation source (KIT, Karlsruhe) for providing beamtime at the XAS beamline and Dr. Stefan Mangold for help during measurements. Angela Beilmann (KIT) is acknowledged for the AAS measurements, and Gülperi Cavusoglu for XRD data acquisition. The authors would further like to thank the Federal Ministry of Education and Research (BMBF) for the financial support (Project “Materials in Action”), and Dr. A. Malyschew (SASOL) for fruitful discussions. Nina V. Smirnova and Alexandra B. Kuriganova thank the Russian Science Foundation (Project No. 14-23-00078) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Doronkin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doronkin, D.E., Kuriganova, A.B., Leontyev, I.N. et al. Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts. Catal Lett 146, 452–463 (2016). https://doi.org/10.1007/s10562-015-1651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1651-z

Keywords

Navigation