Skip to main content
Log in

Electrosynthesis of Catalytically Active Nanocomposites of Bimetallic PdCu and PdAu Nanoparticles with Fe(II), Al(III), Zn(II), Cu(I), and Ti(IV) Oxide–Hydroxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two-step electrosynthesis of nanocomposites of bimetallic PdCu and PdAu nanoparticles (NPs) with iron(II), aluminum(III), zinc(II), copper(I), and titanium(IV) oxide−hydroxides was carried out in the presence of stabilizer cetyltrimethylammonium chloride (CTAC). In the first step, efficient syntheses of Fe, Al, Zn, Cu, and Ti oxide−hydroxides were carried out by reducing dissolved oxygen or methylviologen and generating metal ions by dissolution the corresponding metal anodes. In the second step, syntheses of bimetallic PdCu and PdAu NPs were proceeded by methylviologen (MV2+)-mediated electroreduction of equimolar concentration of Cu(II), Pd(II), and Au(I) in the presence of CTAC and obtained oxide−hydroxides. The results of the syntheses were nanocomposites of mainly spherical MNPs stabilized with CTAC on the surface of oxide−hydroxides with an average size of 2 to 10 nm, but the PdAu@CTAC/Cu2O nanocomposite showed formation of two NPs types with sizes 7 ± 2 nm (Pd) and 24 ± 10 nm (Au). X-ray powder diffraction data showed the absence of metal crystallites in almost all samples with PdCu due to the amorphous phase, and the presence of bimetallic crystallites with sizes ranging from 1 to 15 nm in PdAu composites. In the test reaction of p-nitrophenol reduction all the tested nanocomposites exhibited catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang A, Li J, Zhang T (2018) Heterogeneous single-atom catalysis. Nat Rev Chem 2(65):81. https://doi.org/10.1038/s41570-018-0010-1

    Article  CAS  Google Scholar 

  2. San KA, Shon YS (2018) Synthesis of alkanethiolate-capped metal nanoparticles using alkyl thiosulfate ligand precursors: a method to generate promising reagents for selective catalysis. Nanomaterials 8(5):346. https://doi.org/10.3390/nano8050346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang L, Liu S, Wang Y, Zhang H, Liang F (2018) Controllable synthesis and catalytic performance of gold nanoparticles with cucurbit[n]urils (n = 5–8). Nanomaterials 8:1015. https://doi.org/10.3390/nano8121015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fang W, Zhang Q, Chen J, Deng W, Wang Y (2010) Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols. Chem Commun 46:1547. https://doi.org/10.1039/B923047E

    Article  CAS  Google Scholar 

  5. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  PubMed  Google Scholar 

  6. Suzdalev IP (2006) Nanotechnology. Physicochemistry of nanoclusters, nanostructures and nanomaterials. KomKniga, Moscow

    Google Scholar 

  7. Kharisov BI, Kharissova OV, Ortiz-Mendez U (2012) Handbook of less-common nanostructures. CRC Press, New York

    Book  Google Scholar 

  8. Yanilkin VV, Nasretdinova GR, Kokorekin VA (2018) Mediated electrochemical synthesis of metal nanoparticles. Russ Chem Rev 87:1080–1110. https://doi.org/10.1070/RCR4827

    Article  CAS  Google Scholar 

  9. Yanilkin VV, Krivenko AG (2021) Electrochemistry of nanosystems. RAS, Moscow

    Google Scholar 

  10. Shaabani A, Mahyari M (2013) PdAu alloy nanoparticles encapsulated by PPI-g-MWCNTs as a novel catalyst for chemoselective hydrogenation of alkenes under mild conditions. Catal Lett 143:1277–1284. https://doi.org/10.1007/s10562-013-1063-x

    Article  CAS  Google Scholar 

  11. Zhang Y, Diao W, Monnier JR, Williams CT (2015) Pd–Ag/SiO2 bimetallic catalysts prepared by galvanic displacement for selective hydrogenation of acetylene in excess ethylene. Catal Sci Technol 5:4123–4132. https://doi.org/10.1039/C5CY00353A

    Article  CAS  Google Scholar 

  12. Li X, Zeng Z, Hu B, Qian L, Hong X (2017) Surface-atom dependence of ZnO-supported Ag@Pd core@shell nanocatalysts in CO2 hydrogenation to CH3OH. ChemCatChem 9:924–928. https://doi.org/10.1002/cctc.201601119

    Article  CAS  Google Scholar 

  13. Calver CF, Dash P, Scott RWJ (2011) Selective hydrogenations with Ag_Pd catalysts prepared by galvanic exchange reactions. ChemCatChem 3:695–697. https://doi.org/10.1002/cctc.201000346

    Article  CAS  Google Scholar 

  14. Liu J, Lan L, Li R, Liu X, Wu C (2016) Agglomerated Ag-Pd catalyst with performance for hydrogen generation from formic acid at room temperature. Int J Hydrog Energy 41:951–958. https://doi.org/10.1016/j.ijhydene.2015.10.144

    Article  CAS  Google Scholar 

  15. Lee G, Nguyen NA, Nguyen VT, Larina LL, Chuluunbat E, Park E, Kim J, Choi HS, Keidar M (2022) High entropy alloy electrocatalyst synthesized using plasma ionic liquid reduction. J Solid State Chem 314:123388. https://doi.org/10.1016/j.jssc.2022.123388

    Article  CAS  Google Scholar 

  16. Ru Y, Huang Y, Wang Y, Dai L (2019) Pd-Cu alloy nanoparticle supported on amine-terminated ionic liquid functional 3D graphene and its application on Suzuki cross-coupling reaction. Appl Organomet Chem 33:e5198. https://doi.org/10.1002/aoc.5198

    Article  CAS  Google Scholar 

  17. Heshmatpour F, Abazari R, Balalaie S (2012) Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction. Tetrahedron 68:3001–3011. https://doi.org/10.1016/j.tet.2012.02.028

    Article  CAS  Google Scholar 

  18. Wu Y, Wang D, Zhao P, Niu Z, Peng Q, Li Y (2011) Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura–Suzuki reaction. Inorg Chem 50:2046–2048. https://doi.org/10.1021/ic102263b

    Article  CAS  PubMed  Google Scholar 

  19. Chen M, Zhang Z, Li L, Liu Y, Wang W, Gao J (2014) Fast synthesis of Ag–Pd@reduced graphene oxide bimetallic nanoparticles and their applications as carbon–carbon coupling catalysts. RSC Adv 4:30914–30922. https://doi.org/10.1039/C4RA05186F

    Article  CAS  Google Scholar 

  20. Nasretdinova GR, Fazleeva RR, Osin YN, Evtugyn VG, Gubaidullin AT, Ziganshina AY, Yanilkin VV (2018) Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC. Electrochim Acta 285:149–163. https://doi.org/10.1016/j.electacta.2018.07.109

    Article  CAS  Google Scholar 

  21. Bondarchuk IS, Mamontov GV (2015) Role of PdAg interface in Pd–Ag/SiO2 bimetallic catalysts in low-temperature oxidation of carbon monoxide. Kinet Catal 56:379–385. https://doi.org/10.1134/S0023158415030027

    Article  CAS  Google Scholar 

  22. Wang HK, Yi CY, Tian L, WangWJ Fang J, Zhao JH, Shen WG (2012) Ag-Cu bimetallic nanoparticles prepared by microemulsion method as catalyst for epoxidation of styrene. J Nanomater 2012:1–8. https://doi.org/10.1155/2012/453915

    Article  CAS  Google Scholar 

  23. Benipal N, Qi J, Liu Q, Li W (2017) Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells. Appl Catal B 210:121–130. https://doi.org/10.1016/j.apcatb.2017.02.082

    Article  CAS  Google Scholar 

  24. Liu X, Conte M, He Q, Knight DW, Murphy DM, Taylor SH, Whiston K, Kiely CJ, Hutchings GJ (2017) Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide. Chem Eur J 23:11834–11842. https://doi.org/10.1002/chem.201605941

    Article  CAS  PubMed  Google Scholar 

  25. Landge VK, Sonawane SH, Manickam S, Bhaskar Babu GU, Boczkaj G (2021) Ultrasound-assisted wet-impregnation of Ag–Co nanoparticles on cellulose nanofibers: enhanced catalytic hydrogenation of 4-nitrophenol. J Environ Chem Eng 9:105719. https://doi.org/10.1016/j.jece.2021.105719

    Article  CAS  Google Scholar 

  26. Azetsu A, Koga H, Isogai A, Kitaoka T (2011) Synthesis and catalytic features of hybrid metal nanoparticles supported on cellulose nanofibers. Catalysts 1:83–96. https://doi.org/10.3390/catal1010083

    Article  CAS  Google Scholar 

  27. Han XW, Guo S, Li T, Peng J, Pan H (2022) Construction of Ag/3D-reduced graphene oxide nanocomposite with advanced catalytic capacity for 4-nitrophenol and methylene blue. Colloids Surf A 650:128688. https://doi.org/10.1016/j.colsurfa.2022.128688

    Article  CAS  Google Scholar 

  28. Zhang S, Wu Q, Tang L, Hu Y, Wang M, Zhao J, Li M, Han J, Liu X, Wang H (2018) Individual high-quality N-doped carbon nanotubes embedded with nonprecious metal nanoparticles toward electrochemical reaction. ACS Appl Mater Interfaces 10:39757–39767. https://doi.org/10.1021/acsami.8b14536

    Article  CAS  PubMed  Google Scholar 

  29. Fedorenko S, Jilkin M, Nastapova N, Yanilkin V, Bochkova O, Buriliov V, Nizameev I, Nasretdinova G, Kadirov M, Mustafina A, Budnikova Y (2015) Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions. Colloids Surf A 486:185–191. https://doi.org/10.1016/j.colsurfa.2015.09.044

    Article  CAS  Google Scholar 

  30. Yanilkin VV, Nastapova NV, Nasretdinova GR, Osin YN, Gubaidullin AT (2017) Fullerene mediated electrosynthesis of Au/C60 nanocomposite. ECS J Solid State Sci Technol 6:M19. https://doi.org/10.1149/2.0011704jss

    Article  CAS  Google Scholar 

  31. Yanilkin VV, Fazleeva RR, Nasretdinova GR, Nastapova NV, Osin YN (2018) Fullerene mediated electrosynthesis of silver nanoparticles in toluene-DMF. ECS J Solid State Sci Technol 7:M55. https://doi.org/10.1149/2.0091804jss

    Article  CAS  Google Scholar 

  32. An K, Somorjai GA (2015) Nanocatalysis I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal Lett 145:233–248. https://doi.org/10.1007/s10562-014-1399-x

    Article  CAS  Google Scholar 

  33. Yanilkin VV, Fazleeva RR, Nasretdinova GR, Osin YN, Zhukova NA, Mamedov VA (2020) Benzimidazo[1′,2′:1,2]quinolino[4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline—new mediator for electrosynthesizing metal nanoparticles. Russ J Electrochem 56:646–659. https://doi.org/10.31857/S042485702008006X

    Article  CAS  Google Scholar 

  34. Yanilkin VV, Fazleeva RR, Nasretdinova GR, Osin YN, Zhukova NA, Gubaidullin AT, Samigullina AI, Mamedov VA (2021) Mediated electrosynthesis and catalytic activity of metal nanoparticles nanocomposites with poly(N-vinylpyrrolidone) and nanocellulose. Russ J Electrochem 57(1):30–40. https://doi.org/10.31857/S0424857021010114

    Article  CAS  Google Scholar 

  35. Fazleeva RR, Nasretdinova GR, Osin YN, Samigullina AI, Gubaidullin AT, Yanilkin VV (2021) An effective producing method of nanocomposites of Ag, Au, and Pd nanoparticles with poly(N-vinylpyrrolidone) and nanocellulose. Electrocatalysis 12:225–237. https://doi.org/10.1007/s12678-021-00645-y

    Article  CAS  Google Scholar 

  36. Fazleeva RR, Nasretdinova GR, Osin YN, Gubaidullin AT, Yanilkin VV (2021) Electrochemical method for producing globules of ultrasmall rhodium nanoparticles with poly(N-vinylpyrrolidone) bound to the surface of nanocellulose fibers. Rus Chem Bull Int Ed 70:1908–1916. https://doi.org/10.1007/s11172-021-3295-z

    Article  CAS  Google Scholar 

  37. Kuriganova AB, Leontyev IN, Alexandrin AS, Maslova OA, Rakhmatullin AI, Smirnova NV (2017) Electrochemically synthesized Pt/TiO2/C catalysts for direct methanol fuel cell applications. Mendeleev Commun 27:67–69. https://doi.org/10.1016/j.mencom.2017.01.021

    Article  CAS  Google Scholar 

  38. Kuriganova AB, Leontyeva DV, Ivanov S, Bund A, Smirnova NV (2016) Electrochemical dispersion technique for preparation of hybrid MOx/C supports and Pt/MOx/C electrocatalysts for low-temperature fuel cells. J Appl Electrochem 46:1245–1260. https://doi.org/10.1007/s10800-016-1006-5

    Article  CAS  Google Scholar 

  39. Yanilkin VV, Fazleeva RR, Nasretdinova GR, Osin YN, Gubaidullin AT, Ziganshina AY (2020) Two-step one-pot electrosynthesis and catalytic activity of the CoO–CoO·xH2O supported silver nanoparticles. J Solid State Electrochem 24:829–842. https://doi.org/10.1007/s11705-017-1669-4

    Article  CAS  Google Scholar 

  40. Fazleeva RR, Nasretdinova GR, Osin YN, Ziganshina AY, Yanilkin VV (2020) Two-step electrosynthesis and catalytic activity of CoO–CoO·xH2O-supported Ag, Au, and Pd nanoparticles. Russ Chem Bull 69:241–254. https://doi.org/10.1007/s11172-020-2752-4

    Article  CAS  Google Scholar 

  41. Fazleeva RR, Nasretdinova GR, Osin YN, Samigullina AI, Gubaidullin AT, Yanilkin VV (2020) CoO–xCo(OH)2 supported silver nanoparticles: electrosynthesis in acetonitrile and catalytic activity. Mendeleev Commun 30:456–458. https://doi.org/10.1016/j.mencom.2020.07.016

    Article  CAS  Google Scholar 

  42. Fazleeva RR, Nasretdinova GR, Gubaidullin AT, Evtyugin VG, Yanilkin VV (2022) The two-step electrosynthesis of nanocomposites of Ag, Au, and Pd nanoparticles with iron(II) oxide-hydroxide. New J Chem 46:2380–2392. https://doi.org/10.1039/D1NJ05844D

    Article  CAS  Google Scholar 

  43. Fazleeva RR, Nasretdinova GR, Evtyugin VG, Gubaidullin AT, Yanilkin VV (2022) Electrosynthesis of nanocomposites of Ag, Au, Pd nanoparticles with aluminum(III), zinc(II), and titanium(IV) oxide-hydroxides. J Solid State Electrochem 26:8837. https://doi.org/10.1007/s10008-022-05248-1

    Article  CAS  Google Scholar 

  44. Nastapova NV, Nasretdinova GR, Osin YN, Gubaidullin AT, Yanilkin VV (2020) Two-step mediated electrosynthesis and catalytic activity of Au/Cu2O@poly(N-vinylpyrrolidone) nanocomposite. ECS J Solid State Sci Technol 9(6):061007. https://doi.org/10.1149/2162-8777/aba1fc

    Article  CAS  Google Scholar 

  45. Alheshibri M, Elsayed K, Haladu SA, Magami SM, Al Baroot A, Ercan I, Ercan F, Manda AA, Çevik E, Kayed TS, Alsanea AA, Alotaibi AM, Al-Otaibi AL (2022) Synthesis of Ag nanoparticles-decorated on CNTs/TiO2 nanocomposite as efficient photocatalysts via nanosecond pulsed laser ablation. Opt Laser Technol 155:108443. https://doi.org/10.1016/j.optlastec.2022.108443

    Article  CAS  Google Scholar 

  46. Ramya S, Vijayakumar S, Vidhya E, Bukhari NA, Hatamleh AA, Nilavukkarasi M, Vijayakumar S, Pham TH (2022) TiO2 nanoparticles derived from egg shell waste: eco synthesis, characterization, biological and photocatalytic applications. Environ Res 214:113829. https://doi.org/10.1016/j.envres.2022.113829

    Article  CAS  PubMed  Google Scholar 

  47. Tu S, Ning Z, Duan X, Zhao X, Chang L (2022) Efficient electrochemical hydrogen peroxide generation using TiO2/rGO catalyst and its application in electro-fenton degradation of methyl orange. Colloids Surf A 651:129657. https://doi.org/10.1016/j.colsurfa.2022.129657

    Article  CAS  Google Scholar 

  48. Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2:127–146. https://doi.org/10.4314/ijest.v2i8.63846

    Article  Google Scholar 

  49. Pahija E, Panaritis C, Rutherford B, Couillard M, Patarachao B, Shadbahr J, Bensebaa F, Patience GS, Boffito DC (2022) FeOx nanoparticle doping on Cu/Al2O3 catalysts for the reverse water gas shift. J CO Util 64:102155. https://doi.org/10.1016/j.jcou.2022.102155

    Article  CAS  Google Scholar 

  50. Wang M, Liu Y, Zheng M, Zhou X (2022) Enhanced visible light response of Ag/SnO2 nanostructure enables high-efficiency photocatalytic hydrogen evolution. Colloids Surf A 650:129577. https://doi.org/10.1016/j.colsurfa.2022.129577

    Article  CAS  Google Scholar 

  51. Li Z, Men Y, Liu S, Wang J, Qin K, Tian D, Shi T, Zhang L, An W (2022) Boosting CO2 hydrogenation efficiency for methanol synthesis over Pd/In2O3/ZrO2 catalysts by crystalline phase effect. Appl Surf Sci 603:154420. https://doi.org/10.1016/j.apsusc.2022.154420

    Article  CAS  Google Scholar 

  52. Song FZ, Zhu QL, Yang X, Zhan WW, Pachfule P, Tsumori N, Xu Q (2018) Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv Energy Mater 8:1701416. https://doi.org/10.1002/aenm.201701416

    Article  CAS  Google Scholar 

  53. Yanilkin VV, Nasybullina GR, Sultanova ED, Ziganshina AY, Konovalov AI (2014) Methyl viologen and tetraviologen calix[4]resorcinol as mediators of the electrochemical reduction of [PdCl4]2− with formation of finely dispersed Pd0. Russ Chem Bull Int Ed 63:1409–1415. https://doi.org/10.1007/s11172-014-0611-x

    Article  CAS  Google Scholar 

  54. Basumallick S (2016) Graphene-oxide-copper(I) oxide composite: a prospective catalyst for photo-reduction of CO2. Graphene 5:90–95. https://doi.org/10.4236/graphene.2016.52010

    Article  CAS  Google Scholar 

  55. Fazleeva RR, Nasretdinova GR, Evtyugin VG, Gubaidullin AT, Yanilkin VV (2023) Electrosynthesis of catalytic active Pd-Cu and Pd-Au bimetallic nanoparticles nanocomposites with poly(N-vinylpyrrolidone) and nanocellulose. Russ J Electrochem 59:686–706. https://doi.org/10.31857/S0424857023110063

    Article  Google Scholar 

  56. Murphy ST, Chroneos A, Jiang C, Schwingenschlogl U, Grimes RW (2010) Deviations from Vegard’s law in ternary III-V alloys. Phys Rev B 82:073201–073211. https://doi.org/10.1103/PhysRevB.82.073201

    Article  CAS  Google Scholar 

  57. Lara P, Philippot K (2014) The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview. Catal Sci Technol 4:2445–2465. https://doi.org/10.1039/C4CY00111G

    Article  CAS  Google Scholar 

  58. Babji P, Rao VL (2016) Catalytic reduction of 4-nitrophenol to 4-aminophenol by using Fe2O3-Cu2O-TiO2 nanocomposite. Int J Chem Stud 4:123–127

    CAS  Google Scholar 

  59. Yaseen M, Shah Z, Veses RC, Dias SLP, Lima ÉC, dos Reis GS, Vaghetti JCP, Alencar WSD, Mehmood K (2017) Photocatalytic studies of TiO2/SiO2 nanocomposite xerogels. J Anal Bioanal Tech 8:1–4. https://doi.org/10.4172/2155-9872.1000348

    Article  CAS  Google Scholar 

  60. Khatamian M, Divband B, Jodaei A (2012) Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks. Mater Chem Phys 134:31–37. https://doi.org/10.1016/j.matchemphys.2012.01.091

    Article  CAS  Google Scholar 

  61. Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196:247–257. https://doi.org/10.1016/S0927-7757(01)01040-8

    Article  CAS  Google Scholar 

  62. Ma T, Yang W, Liu S, Zhang H, Liang F (2017) A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catalysts 7:38. https://doi.org/10.3390/catal7020038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The X-ray analyses were carried out on the equipment of Assigned Spectral-Analytical Center of FRC Kazan Scientific Center of RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezeda R. Fazleeva.

Ethics declarations

Conflict of interest

The authors (Rezeda R. Fazleeva, Gulnaz R. Nasretdinova, Vladimir G. Evtyugin, Aidar T. Gubaidullin, Vitaliy V. Yanilkin) declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1023 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazleeva, R.R., Nasretdinova, G.R., Evtyugin, V.G. et al. Electrosynthesis of Catalytically Active Nanocomposites of Bimetallic PdCu and PdAu Nanoparticles with Fe(II), Al(III), Zn(II), Cu(I), and Ti(IV) Oxide–Hydroxides. Catal Lett 154, 2670–2686 (2024). https://doi.org/10.1007/s10562-023-04530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04530-9

Keywords

Navigation