Skip to main content
Log in

Oxidative dehydrogenation of n-butenes to 1,3-butadiene over BiMoFe0.65P x catalysts: effect of phosphorous contents

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A series of BiMoFe0.65P x oxide catalysts with varying phosphorous contents from 0.0 to 0.6 mol ratio were prepared by a co-precipitation method, and oxidative dehydrogenation (ODH) was carried out to produce 1,3-butadiene (BD) from n-butenes. The physico-chemical properties of the oxide catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 sorption, and NH3 and 1-butene temperature-programmed desorption (TPD). Among the catalysts studied here, BiMoFe0.65P0.1 oxide catalyst showed the highest conversion and selectivity to BD. From the result of 1-butene TPD, the higher catalytic activity is related to the amount of weakly bounded intermediate and the desorbing temperature of strongly bounded intermediates. Also, the higher catalytic activity likely originates from the acidity of the BiMoFe0.65P0.1 oxide catalyst; its acidity was higher than that of phosphorous-free oxide catalyst and further contained other oxide catalysts. BiMoFe0.65P0.1 oxide catalyst is stable and no significant deactivation for 100 h ODH reaction was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W.C. White, Chem. Biol. Interact. 166, 10 (2007)

    Article  CAS  Google Scholar 

  2. D.J. Hucknall, Selective Oxidation of Hydrocarbons (Academic, New York, 1974)

    Google Scholar 

  3. H.H. Kung, Ind. Eng. Chem. Prod. Res. Dev. 25, 171 (1986)

    Article  CAS  Google Scholar 

  4. A. Skliarov, Y. Maximov, L.Y. Margolis, O.V. Krylov, J. Catal. 39, 286 (1975)

    Article  Google Scholar 

  5. H.W. Lee, J.C. Jung, S.H. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Korean J. Chem. Eng. 26, 994 (2009)

    Article  CAS  Google Scholar 

  6. J.C. Jung, H.W. Lee, S.Y. Park, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Korean J. Chem. Eng. 25, 1316 (2008)

    Article  CAS  Google Scholar 

  7. F. H. Hoppstock, US Patent 4,002,696 (1977)

  8. G.J. Nolan, US Patent 3,320,329 (1967)

  9. Y. Takita, X. Qing, A. Takami, H. Nishiguchi, K. Nagaoka, Appl. Catal. A 296, 63 (2005)

    Article  CAS  Google Scholar 

  10. Y.-M. Chung, Y.-T. Kwon, T.J. Kim, S.J. Lee, S.-H. Oh, Catal. Lett. 131, 576 (2009)

    Article  Google Scholar 

  11. H.F. Christmann, US Patent 3,270,080 (1966)

  12. L.E. Briand, A.M. Hirt, I.E. Wachs, J. Catal. 202, 268 (2002)

    Article  Google Scholar 

  13. H. Tian, L.E. Wachs, J. Phys. Chem. B 109, 23491 (2005)

    Article  CAS  Google Scholar 

  14. I. Matsuura, R. Schut, K. Hirakawa, J. Catal. 63, 152 (1980)

    Article  CAS  Google Scholar 

  15. W.M. Sears, W.J. Keeler, Appl. Spectrosc. 46, 1898 (1992)

    Article  CAS  Google Scholar 

  16. E.V. Hoefs, J.R. Monnier, G.W. Keulks, J. Catal. 57, 331 (1979)

    Article  CAS  Google Scholar 

  17. P. Forzatti, P.L. Villa, N. Ferlazzo, D. Jones, J. Catal. 76, 188 (1982)

    Article  CAS  Google Scholar 

  18. L.-T. Weng, B. Delmon, Appl. Catal. A 61, 141 (1992)

    Google Scholar 

  19. J.C. Jung, H.W. Lee, H.S. Kim, Y.-M. Chung, T.J. Kim, Catal. Lett. 124, 262 (2008)

    Article  CAS  Google Scholar 

  20. S.A. Veniaminov, G.B. Barannik, React. Kinet. Catal. Lett. 13, 413 (1980)

    Article  CAS  Google Scholar 

  21. M. Ai, J. Catal. 52, 16 (1978)

    Article  CAS  Google Scholar 

  22. M. Ai, J. Catal. 60, 306 (1979)

    Article  CAS  Google Scholar 

  23. H.W. Lee, J.C. Jung, H.S. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Catal. Commun. 9, 1137 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support from Korea Institute of Energy Evaluation and Planning (KETEP). This work has been performed as part of the Energy Technology Innovation Project (ETI) under the Energy Resources Technology Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chae-Ho Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JH., Noh, H., Park, J.W. et al. Oxidative dehydrogenation of n-butenes to 1,3-butadiene over BiMoFe0.65P x catalysts: effect of phosphorous contents. Res Chem Intermed 37, 1125–1134 (2011). https://doi.org/10.1007/s11164-011-0377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0377-9

Keywords

Navigation