Skip to main content
Log in

Prevention of Catalyst Deactivation in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene over Zn-Ferrite Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An efficient method to enhance the catalytic properties of Zn-ferrite catalyst in the oxidative dehydrogenation of n-butene to 1,3-butadiene is proposed. The incorporation of phosphorous compound in Zn-ferrite is very effective to improve the catalytic activity as well as to maintain extremely long useful lives at high oxygen to n-butene ratio. It is found that the amount of phosphorous is critical and the presence of appropriate amount of phosphorous in catalyst may contribute the catalyst stabilization by which unfavorable reduction of Fe3+ sites to Fe2+ is effectively suppressed. This suggests that the oxygen mobility is maintained as high as the redox mechanism keeps constantly working. On the other hand, the effort to increase the population of mobile oxygen species by the introduction of external oxygen donor phase is found to be rather ineffective regardless of the external donor oxides used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Recently, Mitsubishi Chemical announced that butadiene production technology from butene has been developed, Mitsubishi Chemical News Release, December 5, 2008.

References

  1. Welch M, Croce LJ, Christmann HF (1978) Hydrocarbon Processing 131:59

    Google Scholar 

  2. Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Commun 9(6):1137

    Article  CAS  Google Scholar 

  3. Jung JC, Kim H, Choi AS, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Song IK (2007) Catal Commun 8:625

    Article  CAS  Google Scholar 

  4. Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Commun 9:943

    Article  CAS  Google Scholar 

  5. Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Lett 124:364

    Article  CAS  Google Scholar 

  6. Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Commun 9:2059

    Article  CAS  Google Scholar 

  7. Miklas EJ (1976) US3,937,748

  8. Gibson MA, Hightower JW (1976) J Catal 41:431

    Article  CAS  Google Scholar 

  9. Qiu F-Y, Weng L-T, Sham E, Ruiz P, Delmon B (1989) Appl Catal 51:235

    Article  CAS  Google Scholar 

  10. Kung HH, Kung MC (1985) Adv Catal 33:159

    Article  CAS  Google Scholar 

  11. Misono M (2002) Topics Catal 21(1–3):89

    Article  CAS  Google Scholar 

  12. Rennard RJ, Kehl WL (1971) J Catal 21:282

    Article  CAS  Google Scholar 

  13. Toledo JA, Bosch P, Valenzuela MA, Montoya A, Nava N (1997) J Mol Catal A: Chem 125:53

    Article  CAS  Google Scholar 

  14. Aksel’rod EI, Alapin BG, Vishnevsky II, Sukharevsky BY (1971) J Phys Chem Solids 32:1627

    Article  Google Scholar 

  15. Chung Y-M, Kwon Y-T, Kim TJ, Lee SJ, Oh S-H (2009) Catal Lett (in press)

  16. Liang M, Kang W, Xie K (2009) J Natural Gas Chem 18:110

    Article  CAS  Google Scholar 

  17. Moro-oka Y, Ueda W (1994) Adv Catal 40:233 references herein

    Article  CAS  Google Scholar 

  18. Christman HF (1966) US3,270,080

  19. Weng L-T, Ruiz P, Delmon B (1989) J Mol Catal 52:349

    Article  CAS  Google Scholar 

  20. Qui F-Y, Weng L-T, Sham E, Ruiz P, Delmon B (1989) Appl Catal 51:235

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Korea Energy Management Corporation (Contract No. 2008-E-ID11-P-02-0-000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Min Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, YM., Kwon, YT., Kim, T.J. et al. Prevention of Catalyst Deactivation in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene over Zn-Ferrite Catalysts. Catal Lett 131, 579–586 (2009). https://doi.org/10.1007/s10562-009-9991-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9991-1

Keywords

Navigation