Skip to main content
Log in

Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The transition metal catalysts have much concerned over the last two to three decades due to their different properties from their bulk-counterparts, which cover the way for their application in various fields. It has shown superior efficiency in selectivity, performances, and stability to the heterogeneous catalysis. Carbon monoxide (CO) is a very harmful gas that exists in the atmosphere and ambient-temperature complete oxidation of it is an important process for human health protection. The performances of transition metal catalysts are highly dependent on the crystallite size, surface area, and pore volume of the catalysts. The chemisorptions of CO over transitional metal and supported catalysts were studied in this review. The transition metal catalysts have been represented an excellent catalyst from lower cost, thermally, activity, and selectivity point of view. This investigation will show scientific basis for potential design of transition metal oxide catalysts for CO oxidation.

The activity of transition metal catalysts is strongly dependent on the crystallite size, surface area and pore volume of catalysts

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Li Z, Wang H, Wu X, Ye Q, Xu X, Li B, Wang F (2017) Novel synthesis and shape-dependent catalytic performance of Cu–Mn oxides for CO oxidation. Appl Surf Sci 403:335–341

    CAS  Google Scholar 

  2. Dey S, Dhal GC, Prasad R, Mohan D (2016) Effect of nitrate metal (Ce, Cu, Mn and Co) precursors for the total oxidation of carbon monoxide. Res Effi Tech 3:293–302

    Google Scholar 

  3. Dey S, Dhal GC, Mohan D, Prasad R (2017) Kinetics of catalytic oxidation of carbon monoxide over CuMnAgOx catalyst. Mater Disc 8:18–25

    Google Scholar 

  4. Wu Y, Wang DS, Li YD (2014) Nanocrystals from solutions: catalysts. Chem Soc Rev 43:2112–2124

    CAS  Google Scholar 

  5. Yuan CZ, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int 53:1488–1504

    CAS  Google Scholar 

  6. Dey S, Dhal GC, Mohan D, Prasad R (2017) Study of Hopcalite (CuMnOx) catalysts prepared through a novel route for the oxidation of carbon monoxide at low temperature. Bull Chem React Eng Catal 12(3):393–407

    CAS  Google Scholar 

  7. Huang WX (2016) Oxide nanocrystal model catalysts. Acc Chem Res 49:520–527

    CAS  Google Scholar 

  8. Yec CC, Zeng HC (2014) Synthesis of complex nanomaterials via Ostwald ripening. J Mater Chem A 2:4843–4851

    CAS  Google Scholar 

  9. Dey S, Dhal GC, Mohan D, Prasad R (2017) Characterization and activity of CuMnOx/γ-Al2O3 catalyst for oxidation of carbon monoxide. Mater Disc 8:26–34

    Google Scholar 

  10. Dey S, Dhal GC, Mohan D, Prasad R, Gupta RN (2018) Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide. Appl Surf Sci 441:303–316

    CAS  Google Scholar 

  11. Balikci F, Guldur C (2007) Characterization and CO oxidation activity studies of Co based catalyst. Turk J Chem 31:465–471

    CAS  Google Scholar 

  12. Dey S, Dhal GC, Mohan D, Prasad R (2018) Low-temperature complete oxidation of CO over various manganese oxide catalysts. Atmos Pollut Res 9:755–763

    CAS  Google Scholar 

  13. Liu R, Zhao SQ, Zhang MM, Feng F, Shen Q (2015) High interfacial lithium storage capability of hollow porous Mn2O3 nanostructures obtained from carbonate precursors. Chem Commun 51:5728–5731

    CAS  Google Scholar 

  14. Dey S, Dhal GC, Mohan D, Prasad R (2017) Copper based mixed oxide catalysts (CuMnCe, CuMnCo and CuCeZr) for the oxidation of CO at low temperature. Mater Disc 10:1–14

    CAS  Google Scholar 

  15. Tang WX, Wu XF, Li SD, Shan X, Liu G, Chen YF (2015) Co-nanocasting synthesis of mesoporous Cu–Mn composite oxides and their promoted catalytic activities for gaseous benzene removal. Appl Catal B 162:110–121

    CAS  Google Scholar 

  16. Dey S, Dhal GC, Prasad R, Mohan D (2016) Total oxidation of CO by CuMnOx catalyst at a low temperature. Int J Sci Eng Res 7(10):1730–1737

    Google Scholar 

  17. Dong RT, Wang HL, Zhang Q, Xu XT, Wang F, Li B (2015) Shape-controlled synthesis of Mn2O3 hollow structures and their catalytic properties. CrystEngComm 17:7406–7413

    CAS  Google Scholar 

  18. Dey S, Dhal GC, Mohan D, Prasad R (2018) The choice of precursors in the synthesizing of CuMnOx catalysts for maximizing CO oxidation. Int J Ind Chem 9:199–214

    CAS  Google Scholar 

  19. Dey S, Dhal GC, Mohan D, Prasad R (2018) Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature. Polyhedron 155:102–113

    CAS  Google Scholar 

  20. Lee S, Gavriilidis A, Pankhurst QA, Kyek A, Wagner FE, Wong PCL, Yeung KL (2001) Effect of drying conditions of Au-Mn co-precipitates for low temperature CO oxidation. J Catal 200:298–308

    CAS  Google Scholar 

  21. Dey S, Dhal GC, Mohan D, Prasad R (2018) Effect of various metal oxides phases present in CuMnOx catalyst for selective CO oxidation. Mater Disc 12:63–71

    Google Scholar 

  22. Xie X, Li Y, Shen W (2005) Co3O4 nanorods for low temperature oxidation of carbon monoxide. Chin Acad Sci, Dalian 116023

  23. Jansson J, Skoglundh M, Fridell E, Thormählen P (2001) A mechanistic study of low temperature CO oxidation over cobalt oxide. Top Catal 16(17):385–389

    Google Scholar 

  24. Jansson J (2000) Low temperature CO oxidation over Co3O4/Al2O3. J Catal 194:55–60

    CAS  Google Scholar 

  25. Dey S, Dhal GC, Mohan D, Prasad R (2017) Effects of doping on the performance of CuMnOx catalyst for CO oxidation. Bull Chem React Eng Catal 12(3):370–383

    CAS  Google Scholar 

  26. Dey S, Dhal GC, Mohan D, Prasad R (2017) Effect of preparation conditions on the catalytic activity of CuMnOx catalysts for CO oxidation. Bull Chem React Eng Catal 12(3):437–451

    CAS  Google Scholar 

  27. Larsson PO, Berggren H, Andersson A, Augustsson O (1997) Supported metal oxides for catalytic combustion of CO and VOCs emissions: preparation of titania over layers on a macroporous support. Catal Today 35:137–144

    CAS  Google Scholar 

  28. Cunningham DAH, Kobayashi T, Kamijo N, Haruta M (1994) Influence of dry operating conditions: observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts. Catal Lett 25:257–264

    CAS  Google Scholar 

  29. Xia GG, Yin YG, Willis WS, Wang JY, Suib SL (1999) Efficient stable catalysts for low temperature carbon monoxide oxidation. J Catal 185:91–105

    CAS  Google Scholar 

  30. Wang Y, Zhao Y, Gao Y, Liu D (2008) Origin of the high activity and stability of Co3O4 in low temperature CO oxidation. Catal Lett 125:134–138

    CAS  Google Scholar 

  31. Tuysuz H, Comotti M, Schuth F (2008) Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. Chem Commun:4022–4024

  32. Dong ZH, Lai XY, Halpert JE, Yang NL, Yi LX, Zhai J, Wang D, Tang ZY, Jiang L (2012) Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv Mater 24:1046–1049

    CAS  Google Scholar 

  33. Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. Chem Cat Chem 3:24–65

    CAS  Google Scholar 

  34. Prasad R, Singh P (2013) A novel route of single step reactive calcinations of copper salts far below their decomposition temperatures for synthesis of highly active catalysts. Catal Sci Technol 3:3326–3334

    CAS  Google Scholar 

  35. Tan Z, Tan H, Shi X, Ji Z, Yan Y, Zhou Y (2015) Metal-organic framework MIL-53(Al)-supported copper catalyst for CO catalytic oxidation reaction. J Inorg Chem Commun 61:128–131

    CAS  Google Scholar 

  36. Lin H, Chen Y, Wang W (2005) Preparation of nanosized iron oxide and its application in low temperature CO oxidation. J Nano Part Res 7:249–263

    CAS  Google Scholar 

  37. Swislocki S, Stowe K, Maier WF (2014) Catalysts for selective propane oxidation in the presence of carbon monoxide: mechanistic aspects. J Catal 316:219–230

    CAS  Google Scholar 

  38. Kwon SC, Fan M, Wheelock TD, Saha B (2007) Nano- and micro-iron oxide catalysts for controlling the emission of carbon monoxide and methane. Sep Purif Technol 58:40–48

    CAS  Google Scholar 

  39. Cao J, Li G, Wang Y, Sun G, Wang X, Hari B, Zhang Z (2014) Mesoporous Co-Fe-O nanocatalysts: preparation, characterization and catalytic carbon monoxide oxidation. J Environ Chem Eng 2:477–483

    CAS  Google Scholar 

  40. Gao F, Wang Y, Cai Y, Goodman DW (2009) CO oxidation over Ru (0001) at near-atmospheric pressures: from chemisorbed oxygen to RuO2. J Surf Sci 603:1126–1134

    CAS  Google Scholar 

  41. Snytnikov PV, Sobyanin VA, Belyaev VD, Tsyrulnikov PG, Shitova NB, Shlyapin DA (2003) Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd- supported catalysts. Appl Catal A Gen 239:149–156

    CAS  Google Scholar 

  42. Haruta M, Yamada N, Kobayashi T, Lijiama S (1989) Gold catalysts prepared by co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309

    CAS  Google Scholar 

  43. Cole KJ, Carley AF, Crudace MJ, Clarke M, Taylor SH, Hutchings GJ (2010) Copper manganese oxide catalysts modified by gold deposition: the influence on activity for ambient temperature carbon monoxide oxidation. Catal Lett 138:143–147

    CAS  Google Scholar 

  44. Dey S, Dhal GC, Mohan D, Prasad R (2019) Synthesis of silver promoted CuMnOx catalyst for ambient temperature oxidation of carbon monoxide. J Sci: Adv Mater Devices 4:47–56

    Google Scholar 

  45. Cao X, Chen M, Ma J, Yin B, Xing X (2017) CO oxidation by the atomic oxygen on silver clusters: structurally dependent mechanisms generating free or chemically bonded CO2. Phys Chem Chem Phys 19(1):196–203

    CAS  Google Scholar 

  46. Abu Bakar WAW, Toemen RAS (2012) Catalytic methanation reaction over supported nickel–ruthenium oxide base for purification of simulated natural gas. Sci Iran 19(3):525–534

    CAS  Google Scholar 

  47. Hashemnejad SM, Parvari M (2011) Deactivation and regeneration of nickel-based catalysts for steam-methane reforming. Chin J Catal 32(2):273–279

    CAS  Google Scholar 

  48. Grillo F, Natile MM, Glisenti A (2004) Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface. Appl Catal B Environ 48:267–274

    CAS  Google Scholar 

  49. Kraum M, Baerns M (1999) Fischer–Tropsch synthesis: the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance. Appl Catal A Gen 186:189–200

    CAS  Google Scholar 

  50. Toniolo FS, Schmal M (2016) Improvement of catalytic performance of perovskites by partial substitution of cations and supporting on high surface area materials. Chapter 18, Intech Open Science, https://doi.org/10.5772/61279

    Google Scholar 

  51. Kucharczyk B (2015) Catalytic oxidation of carbon monoxide on Pd-containing LaMnO3 perovskites. Catal Lett 145(16):1237–1245

    CAS  Google Scholar 

  52. Mankidy BD, Balakrishnan N, Joseph B, Gupta VK (2014) CO oxidation by cobalt oxide: an experimental study on the relationship between nanoparticle size and reaction kinetics. J Austin Chem Eng 1:1–6

    Google Scholar 

  53. Lin H, Chiu H, Tsai C, Chien S, Wang C (2003) Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide. Catal Lett 88:169–174

    CAS  Google Scholar 

  54. Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN (2016) XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl Surf Sci 366:475–485

    CAS  Google Scholar 

  55. Manceau A, Marcus MA, Grangeon S (2012) Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am Mineral 97(6):816–827

    CAS  Google Scholar 

  56. Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67(14):2649–2662

    CAS  Google Scholar 

  57. Muralidhara K, Misra P (2014) A study on the surface properties of transition metal oxides. Int J Sci Res Manag 2(12):1880–1883

    Google Scholar 

  58. Stancheva M, Manev S, Lazarov D, Mitov M (1996) Catalytic activity of nickel based amorphous alloys for oxidation of hydrogen and carbon monoxide. Appl Catal A Gen 135:19–24

    Google Scholar 

  59. Larsson P, Andersson A, Wallenberg LR, Svensson B (1996) Combustion of CO and toluene: characterization of copper oxide supported on titania and activity comparisons with supported gold, iron and manganese oxide. J Catal 163:279–293

    CAS  Google Scholar 

  60. Al-Sayari S, Carley CF, Taylor SH, Hutchings GJ (2007) Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by Co precipitation. Top Catal 44(1-2):123–128

    CAS  Google Scholar 

  61. Bordoloi A, Sanchez M, Noei H, Kaluza S, Grobmann D, Wang Y, Grunert W, Muhler M (2014) Catalytic behavior of mesoporous cobalt-aluminum oxides for CO oxidation. J Catal 45:1–9

    Google Scholar 

  62. Xanthopoulou G, Vekinis G (1998) Investigation of catalytic oxidation of carbon monoxide over a Cu±Cr-oxide catalyst made by self-propagating high-temperature synthesis. Appl Catal B Environ 19:37–44

    CAS  Google Scholar 

  63. Luo M, Fang P, He M, Xie Y (2005) In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J Mol Catal A Chem 239:243–248

    CAS  Google Scholar 

  64. Pelardy F, Daudin A, Devers E, Dupont C, Raybaud P, Brunet S (2016) Deep HDS of FCC gasoline over alumina supported CoMoS catalyst: inhibiting effects of carbon monoxide and water. Appl Catal B Environ 183:317–327

    CAS  Google Scholar 

  65. Hernanndez WY, Centeno MA, Romero-Sarria F, Ivanova S, Montes M, Odriozola JA (2010) Modified cryptomelane-type manganese dioxide nanomaterials for preferential oxidation of CO in the presence of H2. Catal Today 157:160–165

    Google Scholar 

  66. Cao J, Li G, Wang Y (2015) Oil shale ash supported CuO nanocatalysts: preparation, characterization and catalytic activity for CO oxidation. J Environ Chem Eng 3:1725–1730

    CAS  Google Scholar 

  67. Deng S, Xiao X, Xing X, Wu J, Wen W, Wang Y (2015) Structure and catalytic activity of 3D macro/mesoporous Co3O4 for CO oxidation prepared by a facile self-sustained decomposition of metal organic complexes. J Mol Catal A Chem 398:79–85

    CAS  Google Scholar 

  68. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B Environ 43:151–162

    CAS  Google Scholar 

  69. Loaiza-Gil A, Fontal B, Rueda F, Mendialdua J, Casanova R (1999) On carbonaceous deposit formation in carbon monoxide hydrogenation on a natural iron catalyst. Appl Catal A Gen 177:193–203

    CAS  Google Scholar 

  70. Sun S, Gao Q, Wang H, Zhu J, Guo H (2010) Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Appl Catal B Environ 97:284–291

    CAS  Google Scholar 

  71. Huang T, Lee K, Yang H, Dow W (1998) Effect of chromium addition on supported copper catalysts for carbon monoxide oxidation. Appl Catal A Gen 174:199–206

    CAS  Google Scholar 

  72. Dehestaniathar S, Khajelakzay M, Ramezani-Farani M, Ijadpanah-Saravi H (2015) Modified diatomite-supported CuO-TiO2 composite: preparation, characterization and catalytic CO oxidation. J Taiwan Inst Chem Eng:1–7

  73. Qwabe LQ, Friedrich HB, Singh S (2015) Preferential oxidation of CO in a hydrogen rich feed stream using Co-Fe mixed metal oxide catalysts prepared from hydrotalcite precursors. J Mol Catal A Chem 404:167–177

    Google Scholar 

  74. Salek G, Alphonse P, Dufour P, Guillemet-Fritsch S, Tenailleau C (2014) Low temperature carbon monoxide and propane total oxidation by nanocrystalline cobalt oxides. Appl Catal B Environ 147:1–7

    CAS  Google Scholar 

  75. Halim KSA, Khedr MH, Nasr MI, El-Mansy AM (2007) Factors effecting CO oxidation over nanosized Fe2O3. Mater Res Bull 42:731–741

    Google Scholar 

  76. Tang Y, Dong L, Deng C, Huang M, Li B, Zhang H (2016) In-Situ FTIR investigation of CO oxidation on CuO/TiO2 catalyst. Catal Commun 28:1–17

    Google Scholar 

  77. Zhu J, Zhao Z, Xiao D, Li J, Yang X, Wu Y (2005) CO oxidation, NO decomposition, and NO + CO reduction over perovskite-like oxides La2CuO4 and La2-XSrXCuO4: an MS-TPD study. Ind Eng Chem Res 44(12):4227–4233

    CAS  Google Scholar 

  78. Liu Y, Dai H, Du Y, Deng J, Zhang L, Zao Z, Au CT (2012) Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J Catal 287:149–160

    CAS  Google Scholar 

  79. Kim MH, Kim DW (2011) Parametric study on the deactivation of supported Co3O4 catalysts for low temperature CO oxidation. Chin J Catal 32:762–770

    CAS  Google Scholar 

  80. Yung MM, Holmgreen EM, Ozkan US (2007) Low-temperature oxidation of carbon monoxide on Co/ZrO2. Catal Lett 118:180–186

    CAS  Google Scholar 

  81. Liu C, Virginie M, Constant A, Khodakov A (2015) Impact of potassium content on the structure of molybdenum nanophases in alumina supported catalysts and their performance in carbon monoxide hydrogenation. Appl Catal A Gen 504:565–575

    CAS  Google Scholar 

  82. Pollard MJ, Weinstock BA, Bitterwolf TE, Griffiths PR, Newbery AP, Paine JB (2008) A mechanistic study of the low temperature conversion of carbon monoxide to carbon dioxide over a cobalt oxide catalyst. J Catal 254:218–225

    CAS  Google Scholar 

  83. Feyzi M, Khodaei MM, Shahmoradi J (2015) Preparation and characterization of promoted Fe-Mn/ZSM-5 nano catalysts for CO hydrogenation. Int J Hydrog Energy 40:14816–14825

    CAS  Google Scholar 

  84. Zhang Y, Chen Y, Zhou J, Wang T, Zhao Y (2009) Synthesis and high catalytic activity of mesoporous Co3O4 nanowires for carbon monoxide oxidation. Solid State Commun 149:585–588

    CAS  Google Scholar 

  85. Cao J, Wang Y, Yu X, Wang S, Wu S, Yuan Z (2008) Mesoporous CuO–Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl Catal B Environ 79:26–34

    CAS  Google Scholar 

  86. Li J, Li L, Wu F, Zhang L, Liu X (2013) Dispersion-precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants. Catal Commun 31:52–56

    CAS  Google Scholar 

  87. Umegaki T, Inoue T, Kojima Y (2016) Fabrication of hollow spheres of Co3O4 for catalytic oxidation of carbon monoxide. J Alloys Compd 663:68–76

    CAS  Google Scholar 

  88. Amini E, Rezaei M (2015) Preparation of mesoporous Fe-Cu mixed metal oxide nanopowder as active and stable catalyst for low temperature CO oxidation. Chin J Catal 36:1711–1718

    CAS  Google Scholar 

  89. Du Y, Meng Q, Wang J, Yan J, Fan H, Liu Y, Dai H (2012) Three dimensional mesoporous manganese oxides and cobalt oxides: high efficiency catalysts for the removal of toluene and carbon monoxide. J Microporous Mesoporous Mater 162:199–206

    CAS  Google Scholar 

  90. Wu T, Yan Q, Wan H (2005) Partial oxidation of methane to hydrogen and carbon monoxide over Ni/TiO2 catalysts. J Mol Catal A Chem 226:41–48

    CAS  Google Scholar 

  91. Fazlollahi F, Sarkari M, Gharebaghi H, Atashi H, Zarei MM, Mirzaei AA, Hecker WC (2013) Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch catalyst and its catalytic kinetics for the hydrogenation of carbon monoxide. Catal Kinet React Eng 21:507–519

    CAS  Google Scholar 

  92. Snapkauskiene V, Valincius V, Valatkevicius P (2011) Experimental study of catalytic CO oxidation over CuO/Al2O3 deposited on metal sheets. Catal Today 176:77–80

    CAS  Google Scholar 

  93. Hu C, Gao Z, Yang X (2007) Facile synthesis of single crystalline a-Fe2O3 ellipsoidal nanoparticles and its catalytic performance for removal of carbon monoxide. Mater Chem Phys 104:429–433

    CAS  Google Scholar 

  94. Park PW, Ledford JS (1998) The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts oxidation of carbon monoxide and methane. Appl Catal B Environ 15:221–231

    CAS  Google Scholar 

  95. Wang Y, Zhu X, Crocker M, Chen B, Shi C (2014) A comparative study of the catalytic oxidation of HCHO and CO over Mn0.75Co2.25O4 catalyst: the effect of moisture. Appl Catal B Environ 161:542–551

    Google Scholar 

  96. Podyachea OY, Stadnichenko AI, Yashnik SA, Stonkus OA, Slavinskaya EM, Boronin AI, Puzynin AV, Ismagilov ZR (2014) Catalytic and capacity properties of nano composites based on cobalt oxide and nitrogen-doped carbon nanofibers. Chin J Catal 35:960–969

    Google Scholar 

  97. Chien C, Chuang W, Huang T (1995) Effect of heat treatment conditions on Cu-Cr/γ-alumina catalyst for carbon monoxide and propane oxidation. Applied Catalysis A : General 131:73–87

    CAS  Google Scholar 

  98. Biabani-Ravandi A, Rezaei M, Fattah Z (2013) Study of Fe-Co mixed metal oxide nanoparticles in the catalytic low temperature CO oxidation. Process Saf Environ Prot 91:489–494

    CAS  Google Scholar 

  99. Lv J, Ma X, Bai S, Huang C, Li Z, Gong J (2011) Hydrogenation of carbon monoxide over cobalt nanoparticle supported on carbon nanotubes. Int J Hydrog Energy 36:8365–8372

    CAS  Google Scholar 

  100. Tyurkin YV, Luzhkova EN, Pirogova GN, Chesalov LA (1997) Catalytic oxidation of CO and hydrocarbons on SHS prepared complex metal oxide catalysts. Catal Today 33:191–197

    CAS  Google Scholar 

  101. Alvarez A, Ivanova S, Centeno MA, Odriozola JA (2012) Sub-ambient CO oxidation over mesoporous Co3O4: effect of morphology on its reduction behavior and catalytic performance. Appl Catal A Gen 431:9–17

    Google Scholar 

  102. Khedr MH, Halim KSA, Nasr MI, El-Mansy AM (2006) Effect of temperature on the catalytic oxidation of CO over nano-sized iron oxide. Mater Sci Eng A 430:40–45

    Google Scholar 

  103. Yunbo Y, Jiaojiao Z, Xue H, Yan Z, Xiubo Q, Baoyi W (2013) Influence of calcinations and pretreatment conditions on the activity of Co3O4 for CO oxidation. Chin J Catal 34:283–293

    Google Scholar 

  104. Nagase K, Zheng Y, Kodama Y, Kakuta J (1999) Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu2O. J Catal 187:123–130

    CAS  Google Scholar 

  105. Konova P, Stoyanova M, Naydenov A, Christoskova S, Mehandjiev D (2006) Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide. Appl Catal A Gen 298:109–114

    CAS  Google Scholar 

  106. Wagloehner S, Reichert D, Leon-Sorzano D, Balle P, Geiger B, Kureti S (2008) Kinetic modeling of the oxidation of CO on Fe2O3 catalyst in excess of O2. J Catal 260:305–314

    CAS  Google Scholar 

  107. Kasmi AE, Tian Z, Vieker H, Beyer A, Chafik T (2016) Innovative CVD synthesis of Cu2O catalysts for CO oxidation. Appl Catal B Environ 186:10–18

    Google Scholar 

  108. Guo MY, Liu F, Tsui J, Voskanyan AA, Ng AMC, Djurisic AB, Chan WK, Chan W, Liao C, Shih K, Surya C (2015) Hydrothermally synthesized CuXO as a catalyst for CO oxidation. J Mater Chem 3:3627–3632

    CAS  Google Scholar 

  109. Huang T, Tsai D (2003) CO oxidation behavior of copper and copper oxide. Catal Lett 87:173–178

    CAS  Google Scholar 

  110. Dow W, Huang T (1996) Yttria stabilized zirconia supported copper oxide catalyst. J Catal 160:71–182

    Google Scholar 

  111. White B, Yin M, Hall A, Le D, Stolbov S, Rahman T, Turro N, O’Brien S (2006) Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett 6:2095–2098

    CAS  Google Scholar 

  112. Rattan G, Kaur R (2015) Total oxidation of CO using Cu & Co catalyst: kinetic study and calcinations effect. Bull Chem React Eng Catal 10(3):281–293

    CAS  Google Scholar 

  113. Chen CS, Chen TC, Chen CC, Lai YT, You JH, Chou TM, Chen CH, Lee J (2012) Effect of Ti3+ on TiO2 supported Cu catalysts used for CO oxidation. ACS Lang 28:9996–10006

    CAS  Google Scholar 

  114. Li B, Wei Y, Wang H (2014) Non-isothermal reduction kinetics of Fe2O3-NiO composites for formation of Fe-Ni alloy using carbon monoxide. Trans Nonferrous Metals Soc China 24:3710–3715

    CAS  Google Scholar 

  115. Zhang Y, Wu Y, Wang H, Guo Y, Wang L, Zhan W, Guo Y, Lu G (2015) The effect of the presence of metal Fe in the CO oxidation over Ir/FeOx catalyst. Catal Commun 61:83–87

    CAS  Google Scholar 

  116. Zhao Z, Li Y, Bao T, Wang G, Muhammad T (2014) Hierarchically nanoporous Co-Mn-O/FeOx as a high performance catalyst for CO preferential oxidation in H2-rich stream. Catal Commun 46:28–31

    Google Scholar 

  117. Dey S, Dhal GC (2019) Applications of silver nanocatalysts for low-temperature oxidation of carbon monoxide. Inorg Chem Commun 110(107614):1–12

    Google Scholar 

  118. Dey S, Dhal GC (2019) A review of synthesis, structure and applications in hopcalite catalysts for carbon monoxide oxidation. Aerosol Sci Eng. https://doi.org/10.1007/s41810-019-00046-1

    Google Scholar 

  119. Dey S, Dhal GC (2019) Materials progress in the control of CO and CO2 emission at ambient conditions: an overview. Mater Sci Energy Technol 2:607–623

    Google Scholar 

  120. Punde SS, Tatarchuk BJ (2012) Microfibrous entrapped catalysts for low temperature CO oxidation in humid air. Catal Commun 27:9–12

    CAS  Google Scholar 

  121. Védrine JC (2017) Heterogeneous catalysis on metal oxides. Catalysts 7:341–365

    Google Scholar 

  122. Musick JK, Williams FW (1975) Hopcalite catalyst for catalytic oxidation of gases and aerosols. Ind Eng Chem Prod Res Dev 14(4):284–286

    CAS  Google Scholar 

  123. Guo Y, Li C, Lu S, Zhao C (2016) Low temperature CO catalytic oxidation and kinetic performances of KOH–hopcalite in the presence of CO2. RSC Adv 6:7181–7188

    CAS  Google Scholar 

  124. Szynkowska M, Węglińska A, Wojciechowska E, Paryjczak T (2009) Oxidation of thiophene over copper-manganese mixed oxides. Chem Pap 63(2):233–238

    CAS  Google Scholar 

  125. Soliman NK (2019) Factors affecting CO oxidation reaction over nanosized materials: a review. J Mater Res Technol 8(2):2395–2407

    CAS  Google Scholar 

  126. Ivanov KI, Kolentsova EN, Dimitrov DY, Petrova PT, Tabakova TT (2015) Alumina supported Cu-Mn-Cr catalysts for CO and VOCs oxidation. Int J Mater Metall Eng 9(5):651–658

    Google Scholar 

  127. Wegrzyniak A, Jarczewski S, Wegrzynowicz A, Michorczyk B, Ku´strowski P, Michorczyk P (2017) Catalytic behavior of chromium oxide supported on nanocasting-prepared mesoporous alumina in dehydrogenation of propane. Nanomaterials 7(249):1–16

    Google Scholar 

  128. Michorczyk P, Ogonowski J, Kus´trowski P, Chmielarz L (2008) Chromium oxide supported on MCM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2. Appl Catal A Gen 349:62–69

    CAS  Google Scholar 

  129. Zhang X, Yue Y, Gao Z (2002) Chromium oxide supported on mesoporous SBA-15 as propane dehydrogenation and oxidative dehydrogenation catalysts. Catal Lett 83:19–25

    CAS  Google Scholar 

  130. Cherian M, Rao MS, Yang WT, Jehng JM, Hirt AM, Deo G (2002) Oxidative dehydrogenation of propane over Cr2O3/Al2O3 and Cr2O3 catalysts: effects of loading, precursor and surface area. Appl Catal A Gen 233:21–33

    CAS  Google Scholar 

  131. Ye Z, Giraudon JM, Geyter ND, Morent R, Lamonier JF (2018) The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement. Catalysts 8(2):91. https://doi.org/10.3390/catal8020091

    Article  CAS  Google Scholar 

  132. Dey S, Dhal GC, Mohan D, Prasad R (2019) Application of hopcalite catalyst for controlling carbon monoxide emission at cold-start emission conditions. J Traffic Transp Eng (English Edition). https://doi.org/10.1016/j.jtte.2019.06.002

    Google Scholar 

  133. Bonanni S, Ait-Mansour K, Harbich W, Brune H (2012) Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. J Am Chem Soc 134(7):3445–3450

    CAS  Google Scholar 

  134. Wang S, Yang Z, Chu X, Wang W (2018) Design of efficient catalysts for CO oxidation on titanium carbide–supported platinum via computational study. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b0774

  135. Roy M, Basak S, Naskar MK (2016) Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: tuning properties for efficient CO oxidation. RSC, Phys Chem Chem Phys 18:5253–5263

    CAS  Google Scholar 

  136. Han SW, Kim DH, Jeong M, Park KJ, Kim YD (2016) CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature. Chem Eng J 283:992–998

    CAS  Google Scholar 

  137. Wenge Q, Yu W, Chuanqiang L, Zongcheng Z, Xuehong Z, Guizhen Z, Rui W, Hong H (2012) Effect of activation temperature on catalytic performance of CuBTC for CO oxidation. Chin J Catal 33:986–992

    Google Scholar 

  138. Cheng T, Fang Z, Hu Q, Han K, Yang X, Zhang Y (2007) Low temperature CO oxidation over CuO/Fe2O3 catalysts. Catal Commun 8:1167–1171

    CAS  Google Scholar 

  139. Szegedi A, Hegedu M, Margitfalvi JL, Kiricsi I (2004) Low temperature CO oxidation over iron-containing MCM-41 catalysts. Chem Commun:1441–1443

  140. Zhu B, Zhang X, Wang S, Zhang S, Wu S, Huang W (2007) Synthesis and catalytic performance of TiO2 nanotubes-supported copper oxide for low temperature CO oxidation. Microporous Mesoporous Mater 102:333–336

    CAS  Google Scholar 

  141. Li J, Li L, Cheng W, Wu F, Lu X, Li Z (2014) Controlled synthesis of diverse manganese oxide based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J 244:59–67

    CAS  Google Scholar 

  142. Maity A, Ghosh A, Majumder SB (2016) Engineered spinel-perovskite composite sensor for selective carbon monoxide gas sensing. J Sensors Actuators B Chem 15:1–23

    Google Scholar 

  143. Zhou R, Jiang X, Mao J, Zheng X (1997) Oxidation of carbon monoxide catalyzed by copper-zirconium composite oxides. Appl Catal A Gen 162:213–222

    CAS  Google Scholar 

  144. Pakharukova VP, Moroz EM, Kriventsov VV, Zyuzin DA, Kosmambetova GR, Strizhak PE (2009) Copper-cerium oxide catalysts supported on monoclinic zirconia: structural features and catalytic behavior in preferential oxidation of carbon monoxide in hydrogen excess. Appl Catal A Gen 365:159–164

    CAS  Google Scholar 

  145. Singh S, Madras G (2015) Detailed mechanism and kinetic study of CO oxidation on cobalt oxide surfaces. Appl Catal A Gen 504:463–475

    CAS  Google Scholar 

  146. Kuo CH (2015) Design, synthesis, and characterization of transition metal oxide based functional materials for multi-phase catalytic applications. University of Connecticut Graduate School, Taiwan

    Google Scholar 

  147. Balakrishnan N (2013) Theoretical studies of Co based catalysts on CO hydrogenation and oxidation. University of South Florida Scholar Commons, Florida

    Google Scholar 

  148. Binder AJ (2015) Synthesis and characterization of support modified nanoparticle-based catalysts and mixed oxide catalysts for low temperature CO oxidation. University of Tennessee, Knoxville

    Google Scholar 

  149. Prasad R, Singh P (2012) A review on CO oxidation over copper chromite catalyst. Catal Rev 54(2):224–279

    CAS  Google Scholar 

  150. Rajska M, Długosz P, Zybała R (2016) Effect of support structure in Au/Al2O3-TiO2 catalysts in low-temperature CO oxidation. SEED, E3S Web of Conferences, 10, 00131, DOI: https://doi.org/10.1051/2016E3S.

  151. Lee DS, Chen YW (2013) Synthesis of CoOx-TiO2 catalysts and its application for low-temperature CO oxidation. J Catal 586364:1–9. https://doi.org/10.1155/2013/586364

    Google Scholar 

  152. Park NK, Lee YJ, Kwon BC, Lee TJ, Kang SH, Hong BU, Kim T (2019) Optimization of nickel-based catalyst composition and reaction conditions for the prevention of carbon deposition in toluene reforming. Energies 12:1307. https://doi.org/10.3390/en12071307

    Article  CAS  Google Scholar 

  153. Yi Y, Zhang P, Qin Z, Yu C, Li W, Qin Q, Li B, Fan M, Lianga X, Dong L (2018) Low temperature CO oxidation catalysed by flower-like Ni–Co–O: how physicochemical properties influence catalytic performance. RSC Adv 6:7110–7122

    Google Scholar 

  154. Parravano G (1953) The catalytic oxidation of carbon monoxide on nickel oxide II. Nickel oxide containing foreign ions. J Am Chem Soc 75(6):1452–1454. https://pubs.acs.org/doi/10.1021/ja01102a051

    CAS  Google Scholar 

  155. Saber O, Zaki T (2014) Carbon monoxide oxidation using Zn–Cu–Ti hydrotalcite-derived catalysts. J Chem Sci 126(4):981–988

    CAS  Google Scholar 

  156. Gac W, Zawadzki W, Słowik G, Greluk M, Pawlonka J, Machocki A (2016) Chromium-modified zinc oxides. J Therm Anal Calorim 125:1205–1215

    CAS  Google Scholar 

  157. Chafidz A, Megawati, Widyastuti CR, Augustia V, Nisa K, Ratnaningrum (2018) Application of copper-zinc metal as a catalytic converter in the motorcycle muffler to reduce the exhaust emissions. Int Con Env Sc Eng (8th) 167:1–8

    Google Scholar 

  158. Allam D, Bennici S, Limousy L, Hocine S (2019) Improved Cu- and Zn-based catalysts for CO2 hydrogenation to methanol. Comptes Rendus Chim 22:227–237

    CAS  Google Scholar 

  159. Jiajian G, Jia C, Li J, Zhang M (2013) Ni/Al2O3 catalysts for CO methanation: effect of Al2O3 supports calcined at different temperatures. J Energy Chem 22(6):919–927

    Google Scholar 

Download references

Acknowledgments

The authors would like to express his gratitude to the Department of Civil Engineering and Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, India, for their guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashish Dey.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Dhal, G.C., Mohan, D. et al. Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review. Adv Compos Hybrid Mater 2, 626–656 (2019). https://doi.org/10.1007/s42114-019-00126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00126-3

Keywords

Navigation