Skip to main content
Log in

Effect of Oxygen Capacity and Oxygen Mobility of Pure Bismuth Molybdate and Multicomponent Bismuth Molybdate on their Catalytic Performance in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Pure bismuth molybdate (γ-Bi2MoO6) and multicomponent bismuth molybdate (Co9Fe3Bi1Mo12O51) catalysts were prepared by a co-precipitation method, and were applied to the oxidative dehydrogenation of n-butene to 1,3-butadiene. The Co9Fe3Bi1Mo12O51 catalyst showed a better catalytic performance than the γ-Bi2MoO6 catalyst in terms of conversion of n-butene and yield for 1,3-butadiene, indicating that the multicomponent bismuth molybdate was more efficient than the pure bismuth molybdate in the oxidative dehydrogenation of n-butene. It was revealed that the crucial factor determining the catalytic performance of Bi–Mo-based catalyst in the oxidative dehydrogenation of n-butene is not the amount of oxygen in the catalyst involved in the reaction (oxygen capacity) but the intrinsic mobility of oxygen in the catalyst involved in the reaction (oxygen mobility). The enhanced catalytic performance of Co9Fe3Bi1Mo12O51 was due to its facile oxygen mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burrington JD, Kartisek CT, Grasselli RK (1980) J Catal 63:235

    Article  CAS  Google Scholar 

  2. Kim YH, Yang HS (2000) Korean J Chem Eng 17:357

    Article  CAS  Google Scholar 

  3. Soares APV, Dimitrov LD, Oliveira MCA, Hilaire L, Portela MF, Grasselli RK (2003) Appl Catal A 253:191

    Article  CAS  Google Scholar 

  4. Batist PhA, Bouwens JFH, Schuit GCA (1972) J Catal 25:1

    Article  Google Scholar 

  5. Grasselli RK (2002) Top Catal 21:79

    Article  CAS  Google Scholar 

  6. Linn WJ, Sleight AW (1976) J Catal 41:134

    Article  CAS  Google Scholar 

  7. van Oeffelen DAG, van Hooff JHC, Schuit GCA (1985) J Catal 95:84

    Article  Google Scholar 

  8. Oh SC, Lee HP, Kim HT, Yoo KO (1999) Korean J Chem Eng 16:543

    Article  CAS  Google Scholar 

  9. Toledo-Antonio JA, Nava N, Matínez M, Bokhimi X (2001) Appl Catal A 234:137

    Google Scholar 

  10. Madeira LM, Portela MF (2002) Catal Rev 44:247

    Article  CAS  Google Scholar 

  11. Kung HH (1994) Adv Catal 40:1

    Article  CAS  Google Scholar 

  12. Chaar MA, Patel K, Kung HH (1988) J Catal 109:463

    Article  CAS  Google Scholar 

  13. López Nieto JM, Concepción P, Dejoz A, Knözinger H, Melo F, Vázquez MI (2000) J Catal 189:147

    Article  CAS  Google Scholar 

  14. Krishnan VV, Suib SL (1999) J Catal 184:305

    Article  CAS  Google Scholar 

  15. Egashira M, Matsuo K, Kagawa S, Seiyama T (1979) J Catal 58:409

    Article  CAS  Google Scholar 

  16. Batist PhA, Lippens BC, Schuit GCA (1966) J Catal5:55

    Article  Google Scholar 

  17. Moro-oka Y, Ueda W (1994) Adv Catal 40:233

    Article  CAS  Google Scholar 

  18. Jung JC, Kim H, Choi AS, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Song IK (2006) J Mol Catal A 259:166

    Article  CAS  Google Scholar 

  19. Grzybowska B, Haber J, Komorek J (1972) J Catal 25:25

    Article  CAS  Google Scholar 

  20. Hoefs EV, Monnier JR, Keulks GW (1979) J Catal 57:331

    Article  CAS  Google Scholar 

  21. Wolfs MWJ, Batist PhA (1974) J Catal 32:25

    Article  CAS  Google Scholar 

  22. He D-H, Ueda W, Moro-oka Y (1992) Catal Lett 12:35

    Article  CAS  Google Scholar 

  23. Grasselli RK, Burrington JD (1981) Adv Catal 30:133

    Article  CAS  Google Scholar 

  24. Kung HH, Kung MC (1985) Adv Catal 33:159

    Article  CAS  Google Scholar 

  25. Ueda W, Asakawa K, Chen C-L, Moro-oka Y, Ikawa T (1986) J Catal 101:360

    Article  CAS  Google Scholar 

  26. Jung JC, Kim H, Kim YS, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Song IK (2007) Appl Catal A 317:244

    Article  CAS  Google Scholar 

  27. Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Commun 9:447

    Article  CAS  Google Scholar 

  28. Ruckenstein E, Krishnan R, Rai KN (1976) J Catal 45:270

    Article  CAS  Google Scholar 

  29. Schuit GCA (1974) J Less Comm Metals 36:329

    Article  CAS  Google Scholar 

  30. Grasselli RK (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 5. Wiley, New York, Chapter 4

  31. Batist PhA, Der Kinderen AHWM, Leeuwnburgh Y, Metz FAMG, Schuit GCA (1968) J Catal 12:45

    Article  Google Scholar 

  32. Krenzke LD, Keulks GW (1980) J Catal 64:295

    Article  CAS  Google Scholar 

  33. Dai HX, Ng CF, Au CT (2000) J Catal 189:52

    Article  CAS  Google Scholar 

  34. Royer S, Duprez D, Kaliaguine S (2006) Catal Today 112:99

    Article  CAS  Google Scholar 

  35. Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Commun 9:943

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge support from the Korea Energy Management Corporation (2005-01-0090-3-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.C., Lee, H., Kim, H. et al. Effect of Oxygen Capacity and Oxygen Mobility of Pure Bismuth Molybdate and Multicomponent Bismuth Molybdate on their Catalytic Performance in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene. Catal Lett 124, 262–267 (2008). https://doi.org/10.1007/s10562-008-9450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9450-4

Keywords

Navigation