Skip to main content
Log in

Overview on cyanobacterial exopolysaccharides and biofilms: role in bioremediation

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

A Correction to this article was published on 19 August 2021

This article has been updated

Abstract

Ubiquitous presence of cyanobacteria even under extreme conditions since millions of years is due to their ease in adaptability to these environments through various cellular and molecular modifications. Formation of biofilms has been found to be one of the effective modes of survival under harsh environmental conditions, with exopolysaccharides (EPS) contributing to the formation of these biofilms. Cyanobacterial EPS are unique heteropolysaccharides and being anionic in nature, they have the capabilities for excellent heavy metal adsorption and thus, play a vital role in conferring tolerance against heavy metal toxicity. EPS biosynthesis occurs through multiple pathways involving a multitude of genes. A comprehensive overview on these genes in cyanobacteria using Nostoc sp. strain PCC7120 as the model organism has been discussed in this review. The review also emphasizes on the contribution of EPS to heavy metal remediation and biofilm formation. In the age of developing eco-friendly approaches for environmental clean-up, this information would help engineer cyanobacteria as a potential green technology tool for bioremediation and waste water management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Anjana K, Kaushik A, Kiran B, Nisha R (2007) Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J Hazard Mater 148:383–386

    Article  CAS  Google Scholar 

  • Barranguet C, Charantoni E, Plans M, Admiraal W (2000) Short-term response of monospecific and natural algal biofilms to copper exposure. Eur J Phycol 35:397–406

    Article  Google Scholar 

  • Bender J, Gould JP, Vatcharapijarn Y, Young JS, Phillips P (1994a) Removal of zinc and manganese from contaminated water with cyanobacteria mats. Water Environ Res 66:679–683

    Article  CAS  Google Scholar 

  • Bender J, Rodriguez-Eaton S, Ekanemesang UM, Phillips P (1994b) Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl Environ Microbiol 60:2311–2315

    Article  CAS  Google Scholar 

  • Bender J, Gould JP, Vatcharapijarn Y, Saha G (1991) Uptake, transformation and fixation of Se(VI) by a mixed selenium-tolerant ecosystem. Water Air Soil Pollut 59:359–367

    Article  CAS  Google Scholar 

  • Bender J, Washington JR, Graves B, Phillips P, Abotsi G (1994c) Deposit of zinc and manganese in an aqueous environment mediated by microbial mats. Water Air Soil Pollut 75:195–204

    Article  CAS  Google Scholar 

  • Bender JA, Archibold ER, Ibeanusi V, Gould JP (1989) Lead removal from contaminated water by a mixed microbial ecosystem. Water Sci Technol 21:1661–1664

    Article  CAS  Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179:480–483

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59(1):75–84

    Article  CAS  Google Scholar 

  • Coutaud A, Meheut M, Viers J et al (2014) Zn isotope fractionation during interaction with phototrophic biofilm. Chem Geol 390:46–60

    Article  CAS  Google Scholar 

  • Coutaud M, Meheut M, Glatzel P et al (2018) Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochim Cosmochim Acta 220:1–18

    Article  CAS  Google Scholar 

  • Cui J, Xie Y, Sun T, Chen L, Zhang W (2021) Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. Sci Total Environ 761:144111

    Article  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Applied Microbiol Biotechnol 92:697–708

    Article  CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707

    Article  Google Scholar 

  • Dynes JJ, Tyliszczak T, Araki T et al (2006) Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ Sci Technol 40:1556–1565

    Article  CAS  Google Scholar 

  • Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190:235–248

    Article  CAS  Google Scholar 

  • Fokina AI, Ogorodnikova SY, Domracheva LI et al (2017) Cyanobacteria as test organisms and biosorbents. Eurasian Soil Sci 50:70–77

    Article  CAS  Google Scholar 

  • Folsom B, Popescu NA, Wood JM (1986) Comparative study of aluminum and copper transport and toxicity in an acid-tolerant freshwater green alga. Environ Sci Technol 20:616–620

    Article  CAS  Google Scholar 

  • Furey PC, Liess A, Lee S (2019) Substratum-associated microbiota. Water Environ Res 91:1326–1341

    Article  CAS  Google Scholar 

  • Garcia-Meza JV, Barrangue C, Admiraal W (2005) Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ Toxicol Chem 24:573–581

    Article  CAS  Google Scholar 

  • Gorbushina AA, Broughton WJ (2009) Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annu Rev Microbiol 63:431–450

    Article  CAS  Google Scholar 

  • Hill WR, Bednarek AT, Larsen IL (2000) Cadmium sorption and toxicity in autotrophic biofilms. Can J Fish Aquat Sci 57:530–537

    Article  CAS  Google Scholar 

  • Hou J, Yang Y, Wang P et al (2017) Effects of CeO2, CuO, and ZnO nanoparticles on physiological features of Microcystis aeruginosa and the production and composition of extracellular polymeric substances. Environ Sci Pollut Res Int 24:226–235

    Article  CAS  Google Scholar 

  • Husien S, Labena A, El-Belely E et al (2020) Application of Nostoc sp. for hexavalent chromium [Cr(VI)] removal: planktonic and biofilm. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1773454

    Article  Google Scholar 

  • Ivorra N, Bremer S, Guasch H et al (2000) Differences in the sensitivity of benthic microalgae to ZN and CD regarding biofilm development and exposure history. Environ Toxicol Chem 19:1332–1339

    Article  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thronton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282

    Article  CAS  Google Scholar 

  • Kawaguchi T, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 240:230–235

    Article  CAS  Google Scholar 

  • Kapoor TA, Viraraghavan T (1997) Heavy metal biosorption sites in Aspergillus niger. Biores Tech 61:221–227

    Article  CAS  Google Scholar 

  • Kehr J-C, Dittmann E (2015) Biosynthesis and function of extracellular glycans in cyanobacteria. Life 5:164–180

    Article  CAS  Google Scholar 

  • Kharwar S, Bhattacharjee S, Mishra AK (2021) Disentangling the impact of sulfur limitation on exopolysaccharide and functionality of Alr2882 by In Silico approaches in Anabaena sp. PCC 7120. Appl Biochem Biotechnol 193:1447–1468

    Article  CAS  Google Scholar 

  • Kiran B, Kaushik A (2008) Chromium binding capacity of Lyngbya putealis exopolysaccharides. Biochem Eng J 38:47–54

    Article  CAS  Google Scholar 

  • Kleerebezem M, van Kranenburg R, Tuinier R et al (1999) Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties? Antonie Van Leeuwenhoek 76:357–365

    Article  CAS  Google Scholar 

  • Klock J, Wieland A, Seifert R, Michaelis W (2007) Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Marine Biol 152:1077–1085

    Article  CAS  Google Scholar 

  • Konhauser KO, Fisher QJ, Fyfe WS et al (1998) Authigenic mineralization and detrital clay binding by freshwater biofilms: the Brahmani river, India. Geomicrobiol J 15:209–222

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Bio Evo 35:1547–1549

    Article  CAS  Google Scholar 

  • Lawrence JR, Swerhone GDW, Kwong YTJ (1998) Natural attenuation of aqueous metal contamination by an algal mat. Can J Microbiol 44:825–832

    Article  CAS  Google Scholar 

  • Liu J, Tang J, Wan J et al (2019) Functional sustainability of periphytic biofilms in organic matter and Cu(2+) removal during prolonged exposure to TiO(2) nanoparticles. Hazard Mater 370:4–12

    Article  CAS  Google Scholar 

  • Loustau E, Ferriol J, Koteiche S et al (2019) Physiological responses of three mono-species phototrophic biofilms exposed to copper and zinc. Environ Sci Pollut Res Int 26:35107–35120

    Article  CAS  Google Scholar 

  • Lu S, Wang J, Chitsaz F et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48(D1):D265–D268

    Article  CAS  Google Scholar 

  • Marra M, Palmeri A, Ballio A, Segre A, Slodki ME (1990) Structural characterisation of the exocellular polysaccharide from Cyanospira capsulate. Carbohydr Res 197:338–344

    Article  CAS  Google Scholar 

  • Minkina TM, Soldatov AV, Nevidomskaya DG et al (2016) New approaches to studying heavy metals in soils by X-ray absorption spectroscopy (XANES) and extractive fractionation. Geochem Int 54:197–204

    Article  CAS  Google Scholar 

  • Miranda A, Ramkumar N, Andriotis C et al (2017) Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels. https://doi.org/10.1186/s13068-017-0798-9

    Article  Google Scholar 

  • Mota R, Rossi F, Andrenelli L et al (2016) Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites. Appl Microbiol Biotechnol 100:7765–7775

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1:3–26

    Article  CAS  Google Scholar 

  • Ohki K, Kanesaki Y, Suzuki N et al (2019) Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium Aphanothece sacrum (Suizenji Nori). Gen Appl Microbiol 65:39–46

    Article  CAS  Google Scholar 

  • Pereira S, Mota R, Vieira C, Vieira J, Tamagnini P (2015) Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep 5:14835. https://doi.org/10.1038/srep14835

    Article  CAS  Google Scholar 

  • Pereira SB, Santos M, Leite JP et al (2019) The role of the tyrosine kinase Wzc (Sll0923) and the phosphatase Wzb (Slr0328) in the production of extracellular polymeric substances (EPS) by Synechocystis PCC 6803. Microbiol open 8(6):e00753

    Article  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E et al (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  Google Scholar 

  • Pereira S, Micheletti E, Zille A et al (2011) Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiol 157:451–458

    Article  CAS  Google Scholar 

  • Pereira SB, Sousa A, Santos M et al (2019b) Strategies to obtain designer polymers based on cyanobacterial extracellular polymeric substances (EPS). Int J Mol Sci 20:5693. https://doi.org/10.3390/ijms20225693

    Article  CAS  Google Scholar 

  • Raghavan PS, Potnis AA, Bhattacharyya K et al (2020) Axenic cyanobacterial (Nostoc muscorum) biofilm as a platform for Cd(II) sequestration from aqueous solutions. Algal Res 46:101778. https://doi.org/10.1016/j.algal.2019.101778

    Article  Google Scholar 

  • Reeves PR, Hobbs M, Valvano MA et al (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503

    Article  CAS  Google Scholar 

  • Rossi F, De Philippis R (2015) Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life (basel) 5:1218–1238

    CAS  Google Scholar 

  • Santos M, Pereira SB, Flores C et al (2021) Absence of KpsM (Slr0977) impairs the secretion of extracellular polymeric substances (EPS) and impacts carbon fluxes in synechocystis sp PCC 6803. mSphere 6(1):e00003-21

    Article  CAS  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 26:496

    Google Scholar 

  • Schopf WJ (2011) The paleobiological record of photosynthesis. Photosynth Res 107:87–101

    Article  CAS  Google Scholar 

  • Shukla D, Vankar PS, Srivastava SK (2012) Bioremediation of hexavalent chromium by a cyanobacterial mat. Appl Water Sci 2:245–251

    Article  CAS  Google Scholar 

  • Singh S, Verma E, Niveshika et al (2016) Exopolysaccharide production in Anabaena sp. PCC 7120 under different CaCl 2 regimes. Physiol Mol Biol Plants 22:557–566

    Article  CAS  Google Scholar 

  • Stewart WD (1980) Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbio 34:497–536

    Article  CAS  Google Scholar 

  • Strieth D, Ulber R, Muffler K (2018) Application of phototrophic biofilms: from fundamentals to processes. Bioprocess Biosyst Eng 41:295–312

    Article  CAS  Google Scholar 

  • Sun X, Zhang J (2021) Bacterial exoploysaccharides: chemical structures, gene clusters and genetic engineering. Int J Biol Macromol 173:481–490

    Article  CAS  Google Scholar 

  • Sutherland IW (2001) Microbial polysaccharides from gram-negative bacteria. Int Dairy J 11:663–674

    Article  CAS  Google Scholar 

  • Tekaya N, Gammoudi I, Braiek M et al (2013) Acoustic, electrochemical and microscopic characterization of interaction of Arthrospira platensis biofilm and heavy metal ions. J Environ Chem Eng 1:609–619

    Article  CAS  Google Scholar 

  • Templeton A, Knowles E (2009) Microbial transformations of minerals and metals: recent advances in geomicrobiology derived from synchrotron-based X-Ray spectroscopy and X-Ray microscopy. Annu Rev Earth Planet Sci 37:367–391

    Article  CAS  Google Scholar 

  • Thapa S, Bharti A, Prasanna R (2017) Algal biofilms and their biotechnological significance. In: Algal green chemistry recent progress in biotechnology. pp. 285–303

  • Tien C-J, Chen CS (2013) Patterns of metal accumulation by natural river biofilms during their growth and seasonal succession. Arch Environ Contam Toxicol 64:605–616

    Article  CAS  Google Scholar 

  • Tran HT, Vu ND, Matsukawa M et al (2016) Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam. J Environ Chem Eng 4:2529–2535

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of antarctic microbiology. Adv Microbial Ecol 11:71–146

    Article  Google Scholar 

  • Xie Q, Liu N, Lin D et al (2020) The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris. Environ Pollut 263((Pt A)):114102

    Article  CAS  Google Scholar 

  • Xu H, Yu G, Jiang H (2013) Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. Chemosphere 93:75–81

    Article  CAS  Google Scholar 

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bhaskar Paul and Dr. J. K. Sonber, MPD, BARC for SEM-EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Rajaram.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potnis, A.A., Raghavan, P.S. & Rajaram, H. Overview on cyanobacterial exopolysaccharides and biofilms: role in bioremediation. Rev Environ Sci Biotechnol 20, 781–794 (2021). https://doi.org/10.1007/s11157-021-09586-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-021-09586-w

Keywords

Navigation