Skip to main content
Log in

Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation

  • Research Articles
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Extracellular polymeric substances (EPS) play an important role in bacterial mat formation and sediment stabilisation of coastal zones. The analysis of these secretion products on a molecular level is a prerequisite to understand their formation mechanisms and ecological function in microbial consortia. The present study focuses on the optimisation of EPS isolation and characterisation from cohesive cyanobacterial mats. Extracted EPS were analysed for quantity, content of total organic carbon and nitrogen, and bulk contents of neutral sugars, uronic acids, and proteins. These criteria are strongly influenced by the extraction conditions applied and therefore, the effects of different extraction media (NaCl or artificial seawater), addition of EDTA, centrifugal force, and purification via repeated ethanol precipitation on extraction success were determined. From this an optimised extraction procedure for EPS resulted. When using fresh mat samples, the yield of EPS amounted to 3.3 ± 0.8 mg g−1 mat (dw). The isolated EPS were composed of nearly equal amounts of proteins and uronic acids (12.7 ± 1.5 and 11.8 ± 1.1%, respectively) and the bulk content of neutral sugars was 30.5 ± 2.6%. High contents of TOC and TN indicated relatively pure EPS and only a low contribution of inorganic compounds. Furthermore, low contents of 2-keto-3-deoxyoctonate and the small protein/polysaccharide-ratio in the EPS extracted by our method, signified low contaminations by intracellular polymers and hence a low rupture of cells. Our method provides an useful tool to evaluate further investigations of the composition, characteristics and properties of EPS on a sound basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azeredo J, Lazarova V, Oliveira R (1999) Methods to extract the exopolymeric matrix from biofilms: a comparative study. Water Sci Technol 39:243–250

    Article  CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G, (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown MJ, Lester JN (1980) Comparison of bacterial extracellular polymer extraction methods. Appl Environ Microbiol 40:179–185

    PubMed  CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb Technol 38:237–245

    Article  CAS  Google Scholar 

  • de Brouwer J (2002) Dynamics in extracellular carbohydrate production by marine benthic diatoms. University of Nijmegen, Netherlands

    Google Scholar 

  • de Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of an intertidal mudflat. Mar Ecol Prog Ser 218:33–44

    Article  Google Scholar 

  • de Philippis R, Margheri MC, Materassi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl Environ Microbiol 64:1130–1132

    PubMed  Google Scholar 

  • de Winder B, Staats N, Stal LJ, Paterson DM (1999) Carbohydrate secretion by phototrophic communities in tidal sediments. J Sea Res 42:131–146

    Article  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • Decho AW (1994) Molecular-scale events influencing the microscale cohensiveness of exopolymers. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of Sediments. BIS Verlag, Oldenburg, pp 135–148

    Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr Palaeoclimatol Palaeoecol 219:71–86

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fazio SA, Uhlinger DJ, Parker JH, White DC (1982) Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Appl Environ Microbiol 43:1151–1159

    PubMed  CAS  Google Scholar 

  • Fourçans A, de Oteyza TG, Wieland A, Sole A, Diestra E, van Bleijswijk J, Grimalt JO, Kuhl M, Esteve I, Muyzer G, Caumette P, Duran R (2004) Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiol Ecol 51:55–70

    Article  PubMed  CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    PubMed  CAS  Google Scholar 

  • Gloaguen V, Morvan H, Hoffmann L (1995) Released and capsular polysaccharides of Oscillatoriaceae (Cyanophyceae, Cyanobacteria). Arch Hydrobiol Suppl Algol Stud 78:53–69

    Google Scholar 

  • Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ (1978) A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal Biochem 85:595–601

    Article  PubMed  CAS  Google Scholar 

  • Krumbein WE, Paterson DM, Stal LJ (eds) (1994) Biostabilization of sediments. BIS-Verlag, Oldenburg

    Google Scholar 

  • Liu H, Fang HHP (2002) Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95:249–256

    Article  PubMed  CAS  Google Scholar 

  • Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and Deep-Sea hydrothermal vents: a review. Mar Biotechnol 7:253–271

    Article  CAS  Google Scholar 

  • Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming H-C (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16

    Article  PubMed  CAS  Google Scholar 

  • Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol 97:1822–1827

    Article  PubMed  CAS  Google Scholar 

  • Pepi M, Cesaro A, Liut G, Baldi F (2005) An antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsyfying glycolipid. FEMS Microbiol Ecol 53:157–166

    Article  PubMed  CAS  Google Scholar 

  • Richert L, Golubic S, Le Guedes R, Ratiskol J, Payri C, Guezennec J (2005) Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Curr Microbiol 51:379–384

    Article  PubMed  CAS  Google Scholar 

  • Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 61–120

    Google Scholar 

  • Stal LJ (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J 20:463–478

    Article  CAS  Google Scholar 

  • Uhlinger DJ, White DC (1983) Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica. Appl Environ Microbiol 45:64–70

    PubMed  CAS  Google Scholar 

  • Underwood GJC, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol Oceanogr 40:1243–1253

    Article  CAS  Google Scholar 

  • Wieland A, Zopfi J, Benthien M, Kühl M (2005) Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microb Ecol 49:34–49

    Article  PubMed  CAS  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (eds) (1999) Microbial extracellular polymeric substances. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This study was supported by the German Research Foundation (DFG, Grant Nr. MI 157/21-1 and WI 2094/2-1). The salt company Salins-du-Midi in Salin-de-Giraud, France, is thanked for access to the field site. Technical assistance by Sabine Beckmann, Sascha Herrlich, and Susanne Feindt are gratefully acknowledged. Niko Lahajnar and Renate Ebbinghaus are thanked for lyophilisation of the samples and TOC and TN analysis. Kerstin Harneit is thanked for helpful discussions concerning photometric KDO analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Michaelis.

Additional information

Communicated by M. Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klock, JH., Wieland, A., Seifert, R. et al. Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Mar Biol 152, 1077–1085 (2007). https://doi.org/10.1007/s00227-007-0754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0754-5

Keywords

Navigation