Skip to main content
Log in

Application of phototrophic biofilms: from fundamentals to processes

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biotechnological production of valuables by microorganisms is commonly achieved by cultivating the cells as suspended solids in an appropriate liquid medium. However, the main portion of these organisms features a surface-attached growth in their native habitats. The utilization of such biofilms shows significant challenges, e.g. concerning control of pH, nutrient supply, and heat/mass transfer. But the use of biofilms might also enable novel and innovative production processes addressing robustness and strength of the applied biocatalyst, for example if variable conditions might occur in the process or a feedstock (substrate) is changed in its composition. Besides the robustness of a biofilm, the high density of the immobilized biocatalyst facilitates a simple separation of the catalyst and the extracellular product, whereas intracellular target compounds occur in a concentrated form; thus, expenses for downstream processing can be drastically reduced. While phototrophic organisms feature a fabulous spectrum of metabolites ranging from biofuels to biologically active compounds, the low cell density of phototrophic suspension cultures is still limiting their application for production processes. The review is focusing on pro- and eukaryotic microalgae featuring the production of valuable compounds and highlights requirements for their cultivation as phototrophic biofilms, i.e. setup as well as operation of biofilm reactors, and modeling of phototrophic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(modified from [2])

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(modified from [88])

Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rosche B, Li XZ, Hauer B et al (2009) Microbial biofilms: a concept for industrial catalysis?. Trends Biotechnol 27:636–643. https://doi.org/10.1016/j.tibtech.2009.08.001

    Article  CAS  Google Scholar 

  2. Muffler K, Lakatos M, Schlegel C et al (2014) Application of biofilm bioreactors in white biotechnology. Adv Biochem Eng Biotechnol 146:123–161. https://doi.org/10.1007/10_2013_267

    CAS  Google Scholar 

  3. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279. https://doi.org/10.1007/s00253-010-2521-7

    Article  CAS  Google Scholar 

  4. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531. https://doi.org/10.1016/j.apenergy.2011.04.018

    Article  Google Scholar 

  5. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  Google Scholar 

  6. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. https://doi.org/10.1007/s00253-004-1647-x

    Article  CAS  Google Scholar 

  7. Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240. https://doi.org/10.1016/j.algal.2014.02.003

    Article  Google Scholar 

  8. Stephenson PG, Moore CM, Terry MJ et al (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623. https://doi.org/10.1016/j.tibtech.2011.06.005

    Article  CAS  Google Scholar 

  9. Lundquist TJ, Woertz IC, Quinn NW et al (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California, California

    Google Scholar 

  10. Molina Grima E, Belarbi E-H, Acién Fernández F et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

    Article  CAS  Google Scholar 

  11. Malcata FX (2011) Microalgae and biofuels: a promising partnership?. Trends Biotechnol 29:542–549. https://doi.org/10.1016/j.tibtech.2011.05.005

    Article  CAS  Google Scholar 

  12. Pereira S, Zille A, Micheletti E et al (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x

    Article  CAS  Google Scholar 

  13. Tago Y, Aida K (1977) Exocellular mucopolysaccharide closely related to bacterial floc formation. Appl Environ Microbiol 34:308–314

    CAS  Google Scholar 

  14. Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20(3):227–235. https://doi.org/10.1007/s10811-007-9223-2

    Article  CAS  Google Scholar 

  15. Bharti A, Velmourougane K, Prasanna R (2017) Phototrophic biofilms: diversity, ecology and applications. J Appl Phycol 19(9):257. https://doi.org/10.1007/s10811-017-1172-9

    Google Scholar 

  16. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  Google Scholar 

  17. Babauta JT, Atci E, Ha PT, Phuc T, Lindemann SR, Ewing T, Call DR, Fredrickson JK, Beyenal H (2014) Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat. Front Microbiol 5:11. https://doi.org/10.3389/fmicb.2014.00011

    Article  Google Scholar 

  18. Perez Gutierrez RM, Martinez Flores A, Vargas Solis R et al (2008) Two new antibacterial norabietane diterpenoids from cyanobacteria, Microcoleous lacustris. J Nat Med 62:328–331. https://doi.org/10.1007/s11418-008-0238-z

    Article  CAS  Google Scholar 

  19. Kumar V (2011) Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. J Med Plants Res. https://doi.org/10.5897/JMPR11.1175

    Google Scholar 

  20. Pawar ST, Puranik PR (2008) Screening of terrestrial and freshwater halotolerant cyanobacteria for antifungal activities. World J Microbiol Biotechnol 24(7):1019–1025. https://doi.org/10.1007/s11274-007-9565-6

    Article  CAS  Google Scholar 

  21. Kaushik P, Chauhan A (2008) In vitro antibacterial activity of laboratory grown culture of Spirulina platensis. Indian J Microbiol 48(3):348–352. https://doi.org/10.1007/s12088-008-0043-0

    Article  CAS  Google Scholar 

  22. El-Sheekh MM, Osman MEH, Dyab MA et al (2006) Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ Toxicol Pharmacol 21(1):42–50. https://doi.org/10.1016/j.etap.2005.06.006

    Article  CAS  Google Scholar 

  23. Ibanez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93(4):703–709. https://doi.org/10.1002/jsfa.6023

    Article  CAS  Google Scholar 

  24. Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202. https://doi.org/10.1016/j.watres.2014.07.025

    Article  CAS  Google Scholar 

  25. Volk R-B, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161(2):180–186. https://doi.org/10.1016/j.micres.2005.08.005

    Article  CAS  Google Scholar 

  26. Harun R, Singh M, Forde GM et al (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14(3):1037–1047. https://doi.org/10.1016/j.rser.2009.11.004

    Article  CAS  Google Scholar 

  27. Singh RK, Tiwari SP, Rai AK et al (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64(6):401–412. https://doi.org/10.1038/ja.2011.21

    Article  CAS  Google Scholar 

  28. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae—a review. J Algal Biomass Utln 3(4):89–100

    Google Scholar 

  29. Plaza M, Herrero M, Cifuentes A et al (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16):7159–7170. https://doi.org/10.1021/jf901070g

    Article  CAS  Google Scholar 

  30. Michalak I, Dmytryk A, Wieczorek PP et al (2015) Supercritical algal extracts: a source of biologically active compounds from nature. J Chem 2015(4):1–14. https://doi.org/10.1155/2015/597140

    Article  CAS  Google Scholar 

  31. Amaro HM, Barros R, Guedes AC et al (2013) Microalgal compounds modulate carcinogenesis in the gastrointestinal tract. Trends Biotechnol 31(2):92–98. https://doi.org/10.1016/j.tibtech.2012.11.004

    Article  CAS  Google Scholar 

  32. Caicedo NH, Heyduck-Söller B, Fischer U et al (2011) Bioproduction of antimicrobial compounds by using marine filamentous cyanobacterium cultivation. J Appl Phycol 23(5):811–818. https://doi.org/10.1007/s10811-010-9580-0

    Article  CAS  Google Scholar 

  33. Battah M, Ibrahem Q, El-Naggar M et al (2014) Antifungal agent from Spirulina maxima: extraction and characterization. Global J Pharmacol. https://doi.org/10.5829/idosi.gjp.2014.8.2.8369

    Google Scholar 

  34. Chetsumon A, Fujieda K, Hirata K et al (1993) Optimization of antibiotic production by the cyanobacterium Scytonema sp. TISTR 8208 immobilized on polyurethane foam. J Appl Phycol 5(6):615–622. https://doi.org/10.1007/BF02184640

    Article  CAS  Google Scholar 

  35. Bloor S, England RR (1989) Antibiotic production by the cyanobacterium Nostoc muscorum. J Appl Phycol 1(4):367–372

    Article  Google Scholar 

  36. Jaki B, Orjala J, Sticher O (1999) A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. J Nat Prod 62(3):502–503. https://doi.org/10.1021/np980444x

    Article  CAS  Google Scholar 

  37. Bui HTN, Jansen R, Pham HTL et al (2007) Carbamidocyclophanes A–E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium Nostoc sp. J Nat Prod 70(4):499–503. https://doi.org/10.1021/np060324m

    Article  CAS  Google Scholar 

  38. Kumar D, Dhar DW, Pabbi S et al (2014) Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J Plant Physiol 19:184–188. https://doi.org/10.1007/s40502-014-0094-7

    Article  Google Scholar 

  39. Raveh A, Carmeli S (2007) Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J Nat Prod 70(2):196–201. https://doi.org/10.1021/np060495r

    Article  CAS  Google Scholar 

  40. Salvador-Reyes LA, Sneed J, Paul VJ et al (2015) Amantelides A and B, polyhydroxylated macrolides with differential broad-spectrum cytotoxicity from a Guamanian marine cyanobacterium. J Nat Prod 78(8):1957–1962. https://doi.org/10.1021/acs.jnatprod.5b00293

    Article  CAS  Google Scholar 

  41. Asthana RK, Srivastava A, Singh AP et al (2006) Identification of an antimicrobial entity from the cyanobacterium Fischerella sp. isolated from bark of Azadirachta indica (Neem) tree. J Appl Phycol 18(1):33–39. https://doi.org/10.1007/s10811-005-9011-9

    Article  CAS  Google Scholar 

  42. Davis TW, Berry DL, Boyer GL et al (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8(5):715–725. https://doi.org/10.1016/j.hal.2009.02.004

    Article  CAS  Google Scholar 

  43. Mundt S, Kreitlow S, Nowotny A et al (2001) Biochemical and pharmacological investigations of selected cyanobacteria. Int J Hyg Environ Health 203(4):327–334. https://doi.org/10.1078/1438-4639-00045

    Article  CAS  Google Scholar 

  44. Ostensvik O, Skulberg OM, Underdal B et al (1998) Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria—a comparative study of bacterial bioassays. J Appl Microbiol 84(6):1117–1124

    Article  CAS  Google Scholar 

  45. Asan-Ozusaglem M, Cakmak YS, Kaya M (2013) Bioactivity and antioxidant capacity of Anabaenopsis sp. (Cyanobacteria) extracts. J Algal Biomass Utln 2013(4):50–58

    Google Scholar 

  46. Kreitlow S, Mundt S, Lindequist U (1999) Cyanobacteria—a potential source of new biologically active substances. J Biotechnol 70(1–3):61–63. https://doi.org/10.1016/S0168-1656(99)00058-9

    Article  CAS  Google Scholar 

  47. Wood JL, Miller CD, Sims RC et al (2015) Biomass and phycocyanin production from cyanobacteria dominated biofilm reactors cultured using oilfield and natural gas extraction produced water. Algal Res 11:165–168. https://doi.org/10.1016/j.algal.2015.06.015

    Article  Google Scholar 

  48. Rascher U, Lakatos M, Büdel B et al (2002) Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana Highlands. Eur J Phycol 38(3):247–256. https://doi.org/10.1080/0967026031000121679

    Article  Google Scholar 

  49. Küpper H, Andresen E, Wiegert S et al (2009) Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements. Biochim Biophys Acta 1787(3):155–167. https://doi.org/10.1016/j.bbabio.2009.01.001

    Article  CAS  Google Scholar 

  50. Katoh H, Furukawa J, Tomita-Yokotani K et al (2012) Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. Biochim Biophys Acta 1817(8):1499–1505. https://doi.org/10.1016/j.bbabio.2012.02.039

    Article  CAS  Google Scholar 

  51. Han P-p, Jia S-r, Sun Y et al (2014) Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme. World J Microbiol Biotechnol 30(9):2407–2418. https://doi.org/10.1007/s11274-014-1666-4

    Article  CAS  Google Scholar 

  52. Choi G-G, Bae M-S, Ahn C-Y et al (2008) Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol Lett 30(1):87–92. https://doi.org/10.1007/s10529-007-9523-2

    Article  CAS  Google Scholar 

  53. Sena L, Rojas D, Montiel E et al (2011) A strategy to obtain axenic cultures of Arthrospira spp. cyanobacteria. World J Microbiol Biotechnol 27(5):1045–1053. https://doi.org/10.1007/s11274-010-0549-6

    Article  CAS  Google Scholar 

  54. Katoh H, Shiga Y, Nakahira Y et al (2003) Isolation and characterization of a drought-tolerant cyanobacterium, Nostoc sp. HK-01. Microb Environ 18(2):82–88. https://doi.org/10.1264/jsme2.18.82

    Article  Google Scholar 

  55. Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133. https://doi.org/10.1007/s10811-008-9341-5

    Article  CAS  Google Scholar 

  56. Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensins (Cyanobacteria) cells to light. J Phycol 36(4):675–679. https://doi.org/10.1046/j.1529-8817.2000.99198.x

    Article  CAS  Google Scholar 

  57. Mannan RM, Pakrasi HB (1993) Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Plant Physiol 103(3):971–977. https://doi.org/10.1104/pp.103.3.971

    Article  CAS  Google Scholar 

  58. Stewart WD (1980) Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbiol 34:497–536. https://doi.org/10.1146/annurev.mi.34.100180.002433

    Article  CAS  Google Scholar 

  59. Adams DG (2000) Heterocysts formation in cyanobacteria. Curr Opin Microbiol 3(6):618–624

    Article  Google Scholar 

  60. Zhang C-C, Laurent S, Sakr S et al (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59(2):367–375. https://doi.org/10.1111/j.1365-2958.2005.04979.x

    Article  CAS  Google Scholar 

  61. Walsby AE (2007) Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange. Trends Microbiol 15(8):340–349. https://doi.org/10.1016/j.tim.2007.06.007

    Article  CAS  Google Scholar 

  62. Chiu S-Y, Kao C-Y, Chen C-H et al (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99(9):3389–3396. https://doi.org/10.1016/j.biortech.2007.08.013

    Article  CAS  Google Scholar 

  63. Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct Plant Biol 29(3):335. https://doi.org/10.1071/pp01195

    Article  CAS  Google Scholar 

  64. Raven JA, Giordano M, Beardall J et al (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond B Biol Sci 367(1588):493–507. https://doi.org/10.1098/rstb.2011.0212

    Article  CAS  Google Scholar 

  65. Raven JA (1991) Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO and temperature. Plant Cell Environ 14(8):779–794. https://doi.org/10.1111/j.1365-3040.1991.tb01442.x

    Article  CAS  Google Scholar 

  66. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131. https://doi.org/10.1146/annurev.arplant.56.032604.144052

    Article  CAS  Google Scholar 

  67. Tandeau de Marsac N (1977) Occurence and nature of chromatic adaption in cyanobacteria. J Bacteriol 130(1):82–91

    CAS  Google Scholar 

  68. Rellan S, Osswald J, Saker M et al (2009) First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food Chem Toxicol 47(9):2189–2195. https://doi.org/10.1016/j.fct.2009.06.004

    Article  CAS  Google Scholar 

  69. Karsten U, Herburger K, Holzinger A (2016) Living in biological soil crust communities of African deserts—physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. J Plant Physiol 194:2–12. https://doi.org/10.1016/j.jplph.2015.09.002

    Article  CAS  Google Scholar 

  70. Lakatos M, Strieth D (2017) Terrestrial microalgae: novel concepts for biotechnology and applications. Progr Bot. https://doi.org/10.1007/124_2017_10

    Google Scholar 

  71. Luttge U, Budel B (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol (Stuttg) 12(3):437–444. https://doi.org/10.1111/j.1438-8677.2009.00249.x

    Article  CAS  Google Scholar 

  72. Ma R, Lu F, Bi Y et al (2015) Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kutzing. Biotechnol Lett 37(8):1663–1669. https://doi.org/10.1007/s10529-015-1831-3

    Article  CAS  Google Scholar 

  73. Cuellar-Bermudez SP, Romero-Ogawa MA, Vannela R et al (2015) Effects of light intensity and carbon dioxide on lipids and fatty acids produced by Synechocystis sp. PCC6803 during continuous flow. Algal Res 12:10–16. https://doi.org/10.1016/j.algal.2015.07.018

    Article  Google Scholar 

  74. Apel AC, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess Biosyst Eng 38(6):995–1008. https://doi.org/10.1007/s00449-015-1363-1

    Article  CAS  Google Scholar 

  75. Broenske J, Döbel K, Franke H et al (2002) Installation for carrying out photochemical and photocatalytic reactions and photoinduced processes (EP0968273 B1)

  76. Morita M, Watanabe Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69(6):693–698

    Article  CAS  Google Scholar 

  77. Huber EW (2012) Hanging garden planter apparatus with integrated drainage system (US20120247010 A1)

  78. Münkel R, Schmid-Staiger U, Werner A et al (2013) Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnol Bioeng 110(11):2882–2893. https://doi.org/10.1002/bit.24948

    Article  CAS  Google Scholar 

  79. Trösch W (2001) Bioreaktor für die Kultivierung von Mikroorganismen sowie Verfahren zur Herstellung desselben (WO2002031102 A1)

  80. Cordes R (2005) Vorrichtung zur Zucht und Massenproduktion von Algen (DE 102004007564 A1)

  81. Posten C, Jacobi A, Steinweg C et al (2011) Photobioreactor (US20110318804 A1)

  82. Lakatos M, Bilger W, Büdel B (2001) Carotenoid composition of terrestrial cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur J Phycol 36(4):367–375. https://doi.org/10.1080/09670260110001735518

    Article  Google Scholar 

  83. Kumar A, Ergas S, Yuan X et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  CAS  Google Scholar 

  84. Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85(3):525–534. https://doi.org/10.1007/s00253-009-2133-2

    Article  CAS  Google Scholar 

  85. Kuhne S, Strieth D, Lakatos M et al (2014) A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria. J Biotechnol 192 Pt A:28–33. https://doi.org/10.1016/j.jbiotec.2014.10.002

    Article  CAS  Google Scholar 

  86. Ozkan A, Kinney K, Katz L et al (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548. https://doi.org/10.1016/j.biortech.2012.03.055

    Article  CAS  Google Scholar 

  87. Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109(7):1674–1684. https://doi.org/10.1002/bit.24451

    Article  CAS  Google Scholar 

  88. Tian X, Liao Q, Zhu X et al (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresour Technol 101(3):977–983. https://doi.org/10.1016/j.biortech.2009.09.007

    Article  CAS  Google Scholar 

  89. Podola B, Li T, Melkonian M (2017) Porous substrate bioreactors: a paradigm shift in microalgal biotechnology?. Trends Biotechnol 35(2):121–132. https://doi.org/10.1016/j.tibtech.2016.06.004

    Article  CAS  Google Scholar 

  90. Haley JW, Ahrens TD, Kitchner SR (2014) Systems, apparatuses and methods for treating wastewater (US8809037 B2)

  91. Zhuang L-L, Hu H-Y, Wu Y-H et al (2014) A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae. Bioresour Technol 153:399–402. https://doi.org/10.1016/j.biortech.2013.12.035

    Article  CAS  Google Scholar 

  92. Jorquera O, Kiperstok A, Sales EA et al (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413. https://doi.org/10.1016/j.biortech.2009.09.038

    Article  CAS  Google Scholar 

  93. Schnurr PJ, Espie GS, Allen DG (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344. https://doi.org/10.1016/j.biortech.2013.03.036

    Article  CAS  Google Scholar 

  94. Blanken W, Janssen M, Cuaresma M et al (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111(12):2436–2445. https://doi.org/10.1002/bit.25301

    Article  CAS  Google Scholar 

  95. Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38(4):291–325. https://doi.org/10.1080/15422110903327919

    Article  CAS  Google Scholar 

  96. Herrero M, Cifuents A, IBbanez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae. A review. Food Chem 98(1):136–148. https://doi.org/10.1016/j.foodchem.2005.05.058

    Article  CAS  Google Scholar 

  97. Cheung P (1999) Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem 65(3):399–403. https://doi.org/10.1016/S0308-8146(98)00210-6

    Article  CAS  Google Scholar 

  98. Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng 85(5):475–481. https://doi.org/10.1002/bit.10914

    Article  CAS  Google Scholar 

  99. Griehl C, Kleinert C, Griehl C et al (2015) Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J Appl Phycol 27(5):1833–1843. https://doi.org/10.1007/s10811-014-0472-6

    Article  CAS  Google Scholar 

  100. Zhang F, Cheng L-H, Xu X-H et al (2013) Application of memberane dispersion for enhanced lipid milking from Botryococcus braunii FACHB 357. J Biotechnol 165(1):22–29. https://doi.org/10.1016/j.jbiotec.2013.02.010

    Article  CAS  Google Scholar 

  101. Glembin P, Racheva R, Kerner M et al (2014) Micelle mediated extraction of fatty acids from microalgae cultures: implementation for outdoor cultivation. Sep Purif Technol 135:127–134. https://doi.org/10.1016/j.seppur.2014.07.057

    Article  CAS  Google Scholar 

  102. Ramachandra TV, Mahapatra DM, B K et al (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48(19):8769–8788. https://doi.org/10.1021/ie900044j

    Article  CAS  Google Scholar 

  103. Xu Q-m, Cheng J-s, Ge Z-q et al (2004) Effects of organic solvents on membrane of Taxus cuspidata cells in. Plant Cell Tiss Org 79(1):63–69. https://doi.org/10.1007/s11240-004-4709-y

    Article  CAS  Google Scholar 

  104. Choi SP, Bahn S-H, Sim SJ (2013) Improvement of hydrocarbon recovery by spouting solvent into culture of Botryococcus braunii. Bioprocess Biosyst Eng 36(12):1977–1985. https://doi.org/10.1007/s00449-013-0974-7

    Article  CAS  Google Scholar 

  105. Hahn T, Zayed A, Kovacheva M et al (2016) Dye affinity chromatography for fast and simple purification of fucoidan from marine brown algae. Eng Life Sci 16(1):78–87. https://doi.org/10.1002/elsc.201500044

    Article  CAS  Google Scholar 

  106. Zayed A, Muffler K, Hahn T et al (2016) Physicochemical and biological characterization of Fucoidan from Fucus vesiculosus purified by dye affinity chromatography. Mar Drugs. https://doi.org/10.3390/md14040079

    Google Scholar 

  107. Coles JF, Jones RC (2000) Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J Phycol 36(1):7–16. https://doi.org/10.1046/j.1529-8817.2000.98219.x

    Article  CAS  Google Scholar 

  108. Sivonen K (1990) Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56(9):2658–2666

    CAS  Google Scholar 

  109. Giraldes-Ruiz N, Mateo P, Bonilla I et al (1997) The relationship between intracellular pH, growth characteristics and calcium in the cyanobacterium Anabaena sp. strain PCC7120 exposed to low pH. New Phytol 137(4):599–605. https://doi.org/10.1046/j.1469-8137.1997.00864.x

    Article  Google Scholar 

  110. Qian F, Dixon DR, Newcombe G et al (2014) The effect of pH on the release of metabolites by cyanobacteria in conventional water treatment processes. Harmful Algae 39:253–258. https://doi.org/10.1016/j.hal.2014.08.006

    Article  CAS  Google Scholar 

  111. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31(8):1648–1663. https://doi.org/10.1016/j.biotechadv.2013.08.014

    Article  Google Scholar 

  112. Kuhne S, Strieth D, Weber A et al (2014) Screening of two terrestrial cyanobacteria for biotechnological production processes in shaking flasks, bubble columns, and stirred tank reactors. J Appl Phycol 26(4):1639–1648. https://doi.org/10.1007/s10811-013-0224-z

    Article  CAS  Google Scholar 

  113. Ramanan R, Kim B-H, Cho D-H et al (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34(1):14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003

    Article  CAS  Google Scholar 

  114. Bordel S, Guieysse B, Muñoz R (2009) Mechanistic model for the reclamation of industrial wastewaters using algal–bacterial photobioreactors. Environ Sci Technol 43(9):3200–3207. https://doi.org/10.1021/es802156e

    Article  CAS  Google Scholar 

  115. Peeters JCH, Eilers P (1978) The relationship between light intensity and photosynthesis—a simple mathematical model. Hydrobiol Bull 12(2):134–136. https://doi.org/10.1007/BF02260714

    Article  Google Scholar 

  116. Megard RO, Tonkyn DW, Senft WH (1984) Kinetics of oxygenic photosynthesis in planktonic algae. J Plankton Res 6(2):325–337. https://doi.org/10.1093/plankt/6.2.325

    Article  CAS  Google Scholar 

  117. Aiba S (1982) Growth kinetics of photosynthetic microorganisms. In: Fiechter A (ed) Microbial reactions, vol 23. Springer, Berlin, pp 85–156

    Chapter  Google Scholar 

  118. Zhang D, Xiao N, Mahbubani KT et al (2015) Bioprocess modelling of biohydrogen production by Rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency. Chem Eng Sci 130:68–78. https://doi.org/10.1016/j.ces.2015.02.045

    Article  CAS  Google Scholar 

  119. Zhang D, Dechatiwongse P, del Rio-Chanona EA et al (2015) Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production. Algal Res 9:263–274. https://doi.org/10.1016/j.algal.2015.03.015

    Article  Google Scholar 

  120. Ozkan A, Berberoglu H (2013) Adhesion of algal cells to surfaces. Biofouling 29(4):469–482. https://doi.org/10.1080/08927014.2013.782397

    Article  Google Scholar 

  121. Shen Y, Xu X, Zhao Y et al (2014) Influence of algae species, substrata and culture conditions on attached microalgal culture. Bioprocess Biosyst Eng 37(3):441–450. https://doi.org/10.1007/s00449-013-1011-6

    Article  CAS  Google Scholar 

  122. Murphy TE, Berberoglu H (2014) Flux balancing of light and nutrients in a biofilm photobioreactor for maximizing photosynthetic productivity. Biotechnol Prog 30(2):348–359. https://doi.org/10.1002/btpr.1881

    Article  CAS  Google Scholar 

  123. Muñoz Sierra JD, Picioreanu C, van Loosdrecht MCM (2014) Modeling phototrophic biofilms in a plug-flow reactor. Water Sci Technol 70(7):1261–1270. https://doi.org/10.2166/wst.2014.368

    Article  CAS  Google Scholar 

  124. Govindjee S, Shevela D (2011) Adventures with cyanobacteria: a personal perspective. Front Plant Sci 2:28. https://doi.org/10.3389/fpls.2011.00028

    Article  CAS  Google Scholar 

  125. Glemser M, Heining M, Schmidt J et al (2016) Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Appl Microbiol Biotechnol 100(3):1077–1088. https://doi.org/10.1007/s00253-015-7144-6

    Article  CAS  Google Scholar 

  126. Heining M, Sutor A, Stute SC et al (2015) Internal illumination of photobioreactors via wireless light emitters: a proof of concept. J Appl Phycol 27(1):59–66. https://doi.org/10.1007/s10811-014-0290-x

    Article  CAS  Google Scholar 

  127. Webb C, Fukuda H, Atkinson B (1986) The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnol Bioeng 28(1):41–50. https://doi.org/10.1002/bit.260280107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding by the German Research Foundation (DFG: MU 2985/3-1, UL 170/16-1, and CRC 926 “Microscale Morphology of Component Surfaces”, subproject C03), the Max Buchner Research Foundation (project funding reference number: 3414), and the Carl-Zeiss-Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muffler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strieth, D., Ulber, R. & Muffler, K. Application of phototrophic biofilms: from fundamentals to processes. Bioprocess Biosyst Eng 41, 295–312 (2018). https://doi.org/10.1007/s00449-017-1870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1870-3

Keywords

Navigation