Skip to main content
Log in

Advanced semi-quantum secure direct communication protocol based on bell states against flip attack

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This study proposes two advanced semi-quantum secure direct communication (SQSDC) protocols to address the security problems in Xie et al.’s SQSDC protocol, and further, briefly discusses those security problems. Xie et al. (Int J Theor Phys 57(6):1881–1887, 2018) proposed an SQSDC protocol based on Bell states. However, an eavesdropper can deliberately flip the secret messages sent through Xie et al.’s SQSDC protocol, and can launch a man-in-the-middle attack to obtain part of the secret messages, both without being detected. If not addressed, these security problems can cause the protocol to fail at delivering secret messages. Accordingly, the proposed SQSDC protocols are resistant to the flip attack, man-in-the-middle attack, tagging attack, and collective attack. Moreover, the qubit efficiency of the proposed schemes is the same as Xie et al.’s scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, M., Kenigsberg, D., Mor, T.: Quantum Key Distribution with Classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Tan, Y-g, Lu, H., Cai, Q-y: Comment on “Quantum Key Distribution with Classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  5. Boyer, M., Mor, T.: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A 83(4), 046301 (2011)

    Article  ADS  Google Scholar 

  6. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Article  ADS  Google Scholar 

  7. Zou, X., Qiu, D.: Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states’”. Phys. Rev. A 83(4), 046302 (2011)

    Article  ADS  Google Scholar 

  8. Maitra, A., Paul, G.: Eavesdropping in semiquantum key distribution protocol. Inf. Process. Lett. 113(12), 418–422 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun, Z.-W., Du, R.-G., Long, D.-Y.: Quantum key distribution with limited classical bob. Int. J. Quantum Inf. 11(01), 1350005 (2013)

    Article  MathSciNet  Google Scholar 

  10. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Yu, K.-F., Yang, C.-W., Liao, C.-H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  13. Yang, Y.-G., Sun, S.-J., Zhao, Q.-Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Li, C.-M., Yu, K.-F., Kao, S.-H., Hwang, T.: Authenticated semi-quantum key distributions without classical channel. Quantum Inf. Process. 15(7), 2881–2893 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Li, Q., Chan, W.H., Zhang, S.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    Article  ADS  Google Scholar 

  18. Meslouhi, A., Hassouni, Y.: Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 16(1), 18 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 194 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Liu, Z.-R., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530(4), 1700206 (2018)

    Article  MathSciNet  Google Scholar 

  21. Tsai, C.-L., Hwang, T.: Semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 57(11), 3410–3418 (2018)

    Article  MATH  Google Scholar 

  22. Zhang, W., Qiu, D., Mateus, P.: Security of a single-state semi-quantum key distribution protocol. Quantum Inf. Process. 17(6), 135 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zhu, K.-N., Zhou, N.-R., Wang, Y.-Q., Wen, X.-J.: Semi-quantum key distribution protocols with GHZ states. Int. J. Theor. Phys. 57(12), 3621–3631 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, P.-H., Hwang, T., Tsai, C.-W.: Double CNOT attack on “Quantum key distribution with limited classical Bob”. Int. J. Quant. Infor. 17(02), 1975001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, P.-H., Tsai, C.-W., Hwang, T.: Mediated semi-quantum key distribution using single photons. Ann. Phys. (2019). https://doi.org/10.1002/andp.201800347

    Article  MathSciNet  Google Scholar 

  26. Tsai, C.-W., Yang, C.-W.: Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 58(7), 2244–2250 (2019)

    Article  MATH  Google Scholar 

  27. Tsai, C.-W., Yang, C.-W., Lee, N.-Y.: Lightweight mediated semi-quantum key distribution protocol. Mod. Phys. Lett. A 34(34), 1950281 (2019)

    Article  ADS  Google Scholar 

  28. Wang, M.-M., Gong, L.-M., Shao, L.-H.: Efficient semiquantum key distribution without entanglement. Quantum Inf. Process. 18(9), 260 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhou, N.-R., Zhu, K.-N., Zou, X.-F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Annalen der Physik 0(0), 1800520 (2019)

  30. Liu, W.-J., Chen, Z.-Y., Ji, S., Wang, H.-B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 295 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  33. Gheorghiu, V.: Generalized semiquantum secret-sharing schemes. Phys. Rev. A 85(5), 052309 (2012)

    Article  ADS  Google Scholar 

  34. Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quant. Infor. 10(5), 1250050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. Journal of Physics a-Mathematical and Theoretical 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semiquantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    Article  MATH  Google Scholar 

  37. Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quant. Infor. 11(05), 1350052 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and Improvement of the Semi-quantum Secret Sharing Protocol. Int. J. Theor. Phys. 56(8), 2512–2520 (2017)

    Article  MATH  Google Scholar 

  41. Chen, B., Yang, W., Huang, L.: Cryptanalysis and improvement of the novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 32(25), 1850294 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. Gao, G., Wang, Y., Wang, D.: Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 32(09), 1850117 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  43. Li, Z., Li, Q., Liu, C., Peng, Y., Chan, W.H., Li, L.: Limited resource semiquantum secret sharing. Quantum Inf. Process. 17(10), 285 (2018)

    Article  ADS  MATH  Google Scholar 

  44. Yin, A.H., Tong, Y.: A novel semi-quantum secret sharing scheme using entangled states. Mod. Phys. Lett. B 32(22), 1850256 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  45. He, Q., Yang, W., Chen, B., Huang, L.: Cryptanalysis and improvement of the novel semi-quantum secret sharing scheme using entangled states. Mod. Phys. Lett. B 32(25), 1950045 (2019)

    Article  MathSciNet  Google Scholar 

  46. Tsai, C.-W., Yang, C.-W., Lee, N.-Y.: Semi-quantum secret sharing protocol using W-state. Mod. Phys. Lett. A 34(27), 1950213 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Xiang, Y., Liu, J., Bai, M-q, Yang, X., Mo, Z-w: Limited resource semi-quantum secret sharing based on multi-level systems. Int. J. Theor. Phys. 58, 2883–2892 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci China Phys Mech 57(9), 1696–1702 (2014)

    Article  Google Scholar 

  49. Luo, Y.-P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Zhang, M.-H., Li, H.-F., Xia, Z.-Q., Feng, X.-Y., Peng, J.-Y.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  ADS  MATH  Google Scholar 

  51. Gu, J., Lin, P.-H., Hwang, T.: Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol’. Quantum Inf. Process. 17(7), 182 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Xie, C., Li, L., Situ, H., He, J.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yan, L., Sun, Y., Chang, Y., Zhang, S., Wan, G., Sheng, Z.: Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf. Process. 17(11), 315 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Sun, Y., Yan, L., Chang, Y., Zhang, S., Shao, T., Zhang, Y.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(01), 1950004 (2019)

    Article  ADS  Google Scholar 

  55. Tao, Z., Chang, Y., Zhang, S., Dai, J., Li, X.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58, 2986–2993 (2019)

    Article  MATH  Google Scholar 

  56. Wang, M.-M., Liu, J.-L., Gong, L.-M.: Semiquantum secure direct communication with authentication based on single-photons. Int. J. Quant. Infor. 17(03), 1950024 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(05), 1850047 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yan-Feng, L.: Semi-Quantum Private Comparison Using Single Photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ye, T.-Y., Ye, C.-Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lin, P.-H., Hwang, T., Tsai, C.-W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18(7), 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  61. Nie, Y.Y., Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Cai, Q.-Y.: The “ping-pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801(1) (2003)

    Article  ADS  Google Scholar 

  63. Yang, C.-W., Hwang, T.: Improved QSDC Protocol over a Collective-Dephasing Noise Channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yang, C.-W., Hwang, T., Lin, T.-H.: Modification attack on QSDC with authentication and the improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)

    Article  MathSciNet  Google Scholar 

  65. Lin, T.-H., Yang, C.-W., Hwang, T.: Attacks and improvement on “quantum direct communication with mutual authentication”. Int. J. Theor. Phys. 53(2), 597–602 (2014)

    Article  MATH  Google Scholar 

  66. Deng, F.-G., Long, G., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  67. Deng, F.-G., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  68. Biham, E., Boyer, M., Brassard, G., Van de Graaf, J., Mor, T.: Security of quantum key distribution against all collective attacks. Algorithmica 34(4), 372–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. Boyer, M., Gelles, R., Mor, T.: Attacks on fixed-apparatus quantum-key-distribution schemes. Phys. Rev. A 90(1), 012329 (2014)

    Article  ADS  MATH  Google Scholar 

  70. Boyer, M., Katz, M., Liss, R., Mor, T.: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96(6), 062335 (2017)

    Article  ADS  Google Scholar 

  71. Boyer, M., Liss, R., Mor, T.: Attacks against a simplified experimentally feasible semiquantum key distribution protocol. Entropy 20(7), 536 (2018)

    Article  ADS  Google Scholar 

  72. Boyer, M., Liss, R., Mor, T.: Composable security against collective attacks of a modified BB84 QKD protocol with information only in one basis. Theor. Comput. Sci. 801, 96–109 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  73. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  74. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  75. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  77. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers and the editor for their very valuable comments, which greatly enhanced the clarity of this paper. This research was partially supported by the Ministry of Science and Technology, Taiwan, R.O.C. (Grant Nos. MOST 106-2218-E-039-002-MY3, MOST 107-2218-E-143-002-MY2, and MOST 107-2627-E-006-001), and China Medical University, Taiwan (Grant No. CMU108-N-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wei Tsai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CW., Tsai, CW. Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf Process 19, 126 (2020). https://doi.org/10.1007/s11128-020-02623-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02623-7

Keywords

Navigation