Skip to main content
Log in

Three-step semiquantum secure direct communication protocol

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0〉, |1〉}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. Santa Fe: IEEE Computer Society Press, 1994. 124–134

    Chapter  Google Scholar 

  2. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE, 1984. 175–179

    Google Scholar 

  3. Ekert A K. Quantum cryptography based on Bells theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050

    Article  ADS  Google Scholar 

  6. Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441–444

    Article  ADS  Google Scholar 

  7. Mayers D. Unconditional security in quantum cryptography. J Assn Comput Mach, 2001, 48: 351–406

    Article  MathSciNet  Google Scholar 

  8. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  9. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  10. Hwang W Y. Quantum key distribution with high loss: Toward global secure communication. Phys Rev Lett, 2003, 91: 057901

    Article  ADS  Google Scholar 

  11. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

    Article  ADS  Google Scholar 

  12. Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett, 2005, 94: 230503

    Article  ADS  Google Scholar 

  13. Lo H K, Ma X, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  ADS  Google Scholar 

  14. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev Lett, 2008, 78: 022321

    ADS  Google Scholar 

  15. Boyer M, Kenigsberg D, Mor T. Quantum key distribution with classical Bob. Phys Rev Lett, 2007, 99: 140501

    Article  ADS  MathSciNet  Google Scholar 

  16. Tan Y G, Lu H, Cai Q Y. Comment on “Quantum key distribution with classical Bob”. Phys Rev Lett, 2009, 102: 098901

    Article  ADS  MathSciNet  Google Scholar 

  17. Boyer M, Kenigsberg D, Mor T. Boyer, Kenigsberg, and Mor Reply. Phys Rev Lett, 2009, 102: 098902

    Article  ADS  MathSciNet  Google Scholar 

  18. Boyer M, Gelles R, Kenigsberg D, et al. Semiquantum key distribution. Phys Rev A, 2009, 79: 032341

    Article  ADS  MathSciNet  Google Scholar 

  19. Lu H, Cai Q Y. Quantum key distribution with classical Alice. Int J Quantum Inf, 2008, 6: 1195–1202

    Article  MATH  Google Scholar 

  20. Zou X, Qiu D, Li L, et al. Semiquantum-key distribution using less than four quantum states. Phys Rev A, 2009, 79: 052312

    Article  ADS  Google Scholar 

  21. Boyer M, Mor T. Comment on “Semiquantum-key distribution using less than four quantum states”. Phys Rev A, 2011, 83: 046301

    Article  ADS  Google Scholar 

  22. Zou X, Qiu D. Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states’”. Phys Rev A, 2011, 83: 046302

    Article  ADS  Google Scholar 

  23. Miyadera T. Relation between information and disturbance in quantum key distribution protocol with classical Alice. arXiv:1105.2499, 2011

    Google Scholar 

  24. Boyer M, Mor T. On the robustness of (photonic) quantum key distribution with classical Alice. arXiv:1012.2418, 2010

    Google Scholar 

  25. Zhang X Z, Gong W G, Tan Y G, et al. Quantum key distribution series network protocol with M-classical Bobs. Chin Phys B, 2009, 18: 2143–2148

    Article  ADS  Google Scholar 

  26. Wang J, Zhang S, Zhang Q, et al. Semiquantum key distribution using entangled states. Chin Phys Lett, 2011, 28: 100301

    Article  ADS  Google Scholar 

  27. Li Q, Chan W H, Long D Y. Semiquantum secret sharing using entangled states. Phys Rev A, 2010, 82: 022303

    Article  ADS  Google Scholar 

  28. Wang J, Zhang S, Zhang Q, et al. Semiquantum secret sharing using two-particle entangled state. Int J Quantum Inf, 2012, 10: 1250050

    Article  MathSciNet  Google Scholar 

  29. Long G L, Liu X S. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  30. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  31. Wójcik A. Eavesdropping on the “ping-pong” quantum communication protocol. Phys Rev Lett, 2003, 90: 157901

    Article  ADS  Google Scholar 

  32. Zhang Z, Man Z, Li Y. Improving Wójcik’s eavesdropping attack on the ping-pong protocol. Phys Lett A, 2004, 333: 46–50

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  34. Gao T, Yan F L, Wang Z X. Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo Cimento Della Societa Italiana Di Fisica. B, Relativ Class Statist Phys, 2004, 119: 313–318

    Google Scholar 

  35. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  36. Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18

    Article  ADS  Google Scholar 

  37. Gao T, Yan F, Wang Z. Quantum secure conditional direct communication via EPR pairs. Int J Mod Phys C, 2005, 16: 1293–1301

    Article  ADS  MATH  Google Scholar 

  38. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  39. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 44305

    Article  ADS  Google Scholar 

  40. Wang C, Hao L, Song S Y, et al. Quantum direct communication based on quantum search algorithm. Int J Quantum Inf, 2010, 8: 443–450

    Article  MATH  Google Scholar 

  41. Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67–70

    Article  ADS  Google Scholar 

  42. Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2006, 359: 359–365

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149

    Article  ADS  Google Scholar 

  44. Wang T J, Li T, Du F F, et al. High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin Phys Lett, 2011, 28: 040305

    Article  ADS  Google Scholar 

  45. Gu B, Huang Y G, Fang X, et al. A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B, 2011, 20: 100309

    Article  ADS  Google Scholar 

  46. Gu B, Huang Y G, Fang X, et al. Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun Theor Phys, 2011, 56: 659

    Article  ADS  MATH  Google Scholar 

  47. Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China Ser A, 2011, 54: 942–947

    Google Scholar 

  48. Shi J, Gong Y X, Xu P, et al. Quantum secure direct communication by using three-dimensional hyperentanglement. Commun Theor Phys, 2011, 56: 831

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Gao G, Fang M, Yang R M. Quantum secure direct communication by swapping entanglements of 3 × 3-dimensional Bell states. Int J Theor Phys, 2011, 50: 882–887

    Article  MATH  MathSciNet  Google Scholar 

  50. Liu D, Chen J L, Jiang W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys, 2012, 51: 2923–2929

    Article  MATH  Google Scholar 

  51. Sun Z W, Du R G, Long D Y. Quantum secure direct communication with two-photon four-qubit cluster states. Int J Theor Phys, 2012, 51: 1946–1952

    Article  MATH  MathSciNet  Google Scholar 

  52. Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67: 1–8

    Article  Google Scholar 

  53. Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

    Article  ADS  MATH  Google Scholar 

  54. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

    Article  ADS  Google Scholar 

  55. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  56. Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338

    Article  ADS  Google Scholar 

  57. Long G, Deng F, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys China, 2007, 2: 251–272

    Article  ADS  Google Scholar 

  58. Yan F, Zhang X. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78

    Article  ADS  Google Scholar 

  59. Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22

    Article  ADS  Google Scholar 

  60. Gao T, Yan F L, Wang Z X. Deterministic secure direct communication using GHZ swapping quantum entanglement. J Phys-A-Math Gen, 2005, 38: 5761

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Wang J, Zhang Q, Tang C. Quantum secure direct communication without using perfect quantum channel. Int J Mod Phys C, 2006, 17: 685–692

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Wang J, Zhang Q, Tang C. Quantum secure direct communication without a pre-established secure quantum channel. Int J Quantum Inf, 2006, 4: 925–934

    Article  MATH  Google Scholar 

  63. Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359

    MathSciNet  Google Scholar 

  64. Wang H F, Zhang S, Yeon K H, et al. Quantum secure direct communication by using a GHZ state. J Korean Phys Soc, 2006, 49: 459–463

    Google Scholar 

  65. Schneier B. Applied Cryptography: Protocols, Algorithms, and Source Code in C. Manhattan: John Wiley & Sons, 1996

    MATH  Google Scholar 

  66. Brunel C, Lounis B, Tamarat P, et al. Triggered source of single photons based on controlled single molecule fluorescence. Phys Rev Lett, 1999, 83: 2722–2725

    Article  ADS  Google Scholar 

  67. Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290: 2282–2285

    Article  ADS  Google Scholar 

  68. Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 2001, 409: 490–493

    Article  ADS  Google Scholar 

  69. Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor. Phys Rev Lett, 2001, 86: 783–786

    Article  ADS  Google Scholar 

  70. Kraus K, Böhm A, Dollard J D, et al. States, effects, and operations fundamental notions of quantum theory. Lect Note Phys, 1983, 190: 103–149

    Article  ADS  Google Scholar 

  71. Steane A M. Simple quantum error-correcting codes. Phys Rev A, 1996, 54: 4741

    Article  ADS  MathSciNet  Google Scholar 

  72. Steane A M. Error correcting codes in quantum theory. Phys Rev Lett, 1996, 77: 793–797

    Article  ADS  MATH  MathSciNet  Google Scholar 

  73. Calderbank A R, Shor P W. Good quantum error-correcting codes exist. Phys Rev A, 1996, 54: 1098

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaoWen Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Qiu, D. Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696–1702 (2014). https://doi.org/10.1007/s11433-014-5542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5542-x

Keywords

Navigation