Skip to main content
Log in

Semiquantum secure direct communication using EPR pairs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secure direct communication can transmit a secret message directly through quantum channels without first generating a shared secret key. In the most of the existing protocols, quantum secure direct communication is possible only when both communicating participants have quantum capabilities. So what happens if either party of two participants just has classical capabilities? In this paper, we propose a semiquantum secure direct communication protocol with Einstein–Podolsky–Rosen photon pairs in which the classical sender Bob transmits a secret message to quantum Alice directly. After checking the security of quantum channels, Bob encodes his secret message on Alice’s code sequence. Then, quantum Alice extracts Bob’s secret message by measuring her home qubits and the received code qubits, respectively. In addition, we demonstrate the security of the proposed protocol against some individual eavesdropping attacks. The efficiency analysis shows that our protocol can provide higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore. pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)

    Article  ADS  Google Scholar 

  5. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68(4), 042315 (2003)

    Article  ADS  Google Scholar 

  7. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  8. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  9. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  11. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  12. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  13. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  14. Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)

    Article  ADS  Google Scholar 

  15. Zhang, M.H., Li, H.F.: Fault-tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process. 15(10), 4283–4301 (2016)

    Article  ADS  MATH  Google Scholar 

  16. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  17. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  18. Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. arXiv:1609.09184 (2016)

  19. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  20. Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  21. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)

    Article  ADS  MATH  Google Scholar 

  22. Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure direct communication by Einstein–Podolsky–Rosen pairs and entanglement swapping. arXiv:quant-ph/0406083 (2004)

  23. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  24. Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)

    Article  ADS  Google Scholar 

  25. Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24(1), 15–18 (2007)

    Article  ADS  Google Scholar 

  26. Man, Z.X., Xia, Y.J., Nguyen, B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)

    Article  ADS  Google Scholar 

  27. Man, Z.X., Xia, Y.J.: Efficient one-sender versus N-receiver quantum secure direct communication. Chin. Phys. Lett. 23(8), 1973–1975 (2006)

    Article  ADS  Google Scholar 

  28. Man, Z.X., Xia, Y.J.: Quantum secure direct communication via partially entangled states. Chin. Phys. 16(5), 1197–1200 (2007)

    Article  ADS  Google Scholar 

  29. Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)

    Article  ADS  MATH  Google Scholar 

  30. Li, X.H., Li, C.Y., Deng, F.G., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)

    Article  ADS  Google Scholar 

  31. Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 064304 (2008)

    Article  ADS  Google Scholar 

  32. Wang, C., Hao, L., Song, S.Y., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010)

    Article  MATH  Google Scholar 

  33. Wang, T.J., Li, T., Du, F.F., et al.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)

    Article  ADS  Google Scholar 

  34. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–48 (2017)

    Article  Google Scholar 

  35. Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)

    Article  ADS  Google Scholar 

  36. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  37. Chang, C.H., Luo, Y.P., Yang, C.W., et al.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Tan, X.Q., Zhang, X.Q.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Gu, B., Zhang, C.Y., Cheng, G.S., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)

    Article  ADS  Google Scholar 

  40. Gu, B., Huang, Y.G., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)

    Article  ADS  MATH  Google Scholar 

  42. Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 1–10 (2015)

    Article  Google Scholar 

  43. Gu, B., Huang, Y.G., Fang, X., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)

    Article  ADS  Google Scholar 

  44. Gu, B., Huang, Y.G., Fang, X., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56(4), 659–663 (2011)

    Article  ADS  MATH  Google Scholar 

  45. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)

    Article  MATH  Google Scholar 

  46. Yang, Y.Y.: A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. 53(7), 2216–2221 (2014)

    Article  MathSciNet  Google Scholar 

  47. Li, Y.B., Song, T.T., Huang, W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54(2), 589–597 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13(12), 2731–2743 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Guerra, A.G.D.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15(11), 4747–4758 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Li, W.L., Chen, J.B., Wang, X.L., et al.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54(1), 100–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64(16), 160307 (2015)

    Google Scholar 

  52. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “Quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  54. Boyer, M., Kenigsberg, D., Mor, T.: Comment on “Quantum Key Distribution with Classical Bob” Reply. Phys. Rev. Lett. 102(9), 098902 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  55. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6(6), 1195–1202 (2008)

    Article  MATH  Google Scholar 

  57. Zhang, X.Z., Gong, W.G., Tan, Y.G., et al.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143–2148 (2009)

    Article  ADS  Google Scholar 

  58. Zou, X.F., Qiu, D.W., Li, L.Z., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  59. Boyer, M., Mor, T.: On the robustness of (photonic) quantum key distribution with classical Alice. arXiv:1012.2418 (2010)

  60. Boyer, M., Mor, T.: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A 83(4), 046301 (2011)

    Article  ADS  Google Scholar 

  61. Zou, X.F., Qiu, D.W.: Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states”’. Phys. Rev. A 83(4), 046302 (2011)

    Article  ADS  Google Scholar 

  62. Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9(6), 1427–1435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  64. Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  65. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Li, Q., Chan, W.H., Zhang, S.Y.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    Article  ADS  Google Scholar 

  68. Zou, X.F., Qiu, D.W., Zhang, S.Y.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  70. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  71. Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  74. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  75. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Li, C.Y., Zhou, H.Y., Wang, Y., et al.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  77. Li, C.Y., Li, X.H., Deng, F.G., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  78. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  79. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  80. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  81. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  82. Degiovanni, I.P., Ruo Berchera, I., Castelletto, S., et al.: Quantum dense key distribution. Phys. Rev. A 69(3), 032310 (2004)

    Article  ADS  Google Scholar 

  83. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Article  ADS  Google Scholar 

  84. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  85. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  86. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 012311 (2004)

    Article  ADS  Google Scholar 

  87. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39(45), 14089–14099 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

  89. Braginsky, V.B., Khalili, F.Y.: Quantum Measurement. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  90. Liu, C., Dutton, Z., Behroozi, C.H., et al.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819), 490–493 (2001)

    Article  ADS  Google Scholar 

  91. Phillips, D.F., Fleischhauer, A., Mair, A., et al.: Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783–786 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61273250) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No. CX201618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qiang Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MH., Li, HF., Xia, ZQ. et al. Semiquantum secure direct communication using EPR pairs. Quantum Inf Process 16, 117 (2017). https://doi.org/10.1007/s11128-017-1573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1573-3

Keywords

Navigation