Skip to main content
Log in

Multi-party quantum private comparison of size relation with d-level single-particle states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, by using d-level single-particle states, two novel multi-party quantum private comparison protocols for size relation comparison with two semi-honest third parties and one semi-honest third party are constructed, respectively. Here, each protocol can compare the size relation of secret integers from n parties rather than just the equality within one time execution. In each protocol, every third party is assumed to be semi-honest in the sense that she may misbehave on her own but is not allowed to collude with anyone else; and each party employs the qudit shifting operation to encode her secret integer. Each protocol can resist both the outside attack and the participant attack. Specially, each party’s secret integer can be kept unknown to other parties and the third parties. The proposed protocol with two third parties is workable in a stranger environment, as there are no communication and no pre-shared key between each pair of party. The proposed protocol with one third party is workable in an acquaintance environment, as all parties need to share a common private key beforehand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

  5. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  6. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  7. Zhang, C.M., Song, X.T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)

    Article  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  9. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)

    Article  ADS  Google Scholar 

  10. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)

    Article  ADS  Google Scholar 

  11. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  13. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  14. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5), 420–424 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  17. Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)

    Article  ADS  Google Scholar 

  18. Wang, T.Y., Wen, Q.Y., Chen, X.B., et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281(24), 6130–6134 (2008)

    Article  ADS  Google Scholar 

  19. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Keet, A., Fortescue, B., Markham, D., et al.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)

    Article  ADS  Google Scholar 

  22. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  Google Scholar 

  23. Zhang, Z.J., Liu, Y.M., Zhang, Z.Y., Zhang, W., Zhang, Z.J.: Many-agent controlled teleportation of multi-qubit quantum information via quantum entanglement swapping. Commun. Theor. Phys. 44(5), 847–849 (2005)

    Article  ADS  Google Scholar 

  24. Yin, X.F., Liu, Y.M., Man, Z.Y., Zhang, Z.J.: Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state. Sci. China Phys. Mech. Astron. 53(11), 2059–2063 (2010)

    Article  ADS  Google Scholar 

  25. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  26. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 6600111 (2015)

    Google Scholar 

  27. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  28. Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)

    Article  MathSciNet  Google Scholar 

  29. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), Washington, DC, p. 160 (1982)

  30. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret Appl. Math. 111(1–2), 23–36 (2001)

    Article  MathSciNet  Google Scholar 

  31. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561 (2010)

    Article  ADS  Google Scholar 

  33. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80, 065002 (2009)

    Article  ADS  Google Scholar 

  34. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  35. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  Google Scholar 

  36. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10, 1250065 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52, 3212–3219 (2013)

    Article  MathSciNet  Google Scholar 

  38. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quantum Inf. 11, 1350039 (2013)

    Article  MathSciNet  Google Scholar 

  40. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12, 1981–1990 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13, 101–112 (2014)

    Article  ADS  Google Scholar 

  43. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  Google Scholar 

  44. Liu, X.T., Zhang, B., Wang, J., Tang, C.J., Zhao, J.J.: Differential phase shift quantum private comparison. Quantum Inf. Process. 13, 71–84 (2014)

    Article  ADS  Google Scholar 

  45. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)

    Article  MathSciNet  Google Scholar 

  46. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with χ-type entangled states. Int. J. Theor. Phys. 52, 4185–4194 (2013)

    Article  MathSciNet  Google Scholar 

  47. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W States. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Article  Google Scholar 

  48. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  49. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  50. Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12, 559–568 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  51. Guo, F.Z., Gao, F., Qin, S.J., Zhang, J., Wen, Q.Y.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12, 2793–2802 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  52. Yu, C.H., Guo, G.D., Lin, S.: Quantum private comparison with d-level single-particle states. Phys. Scr. 88, 065013 (2013)

    Article  ADS  Google Scholar 

  53. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  54. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53, 1085–1091 (2014)

    Article  MathSciNet  Google Scholar 

  55. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13, 2375–2389 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  56. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  57. Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13, 2343–2352 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  58. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14(11), 4225–4235 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  59. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  60. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049 (2005)

    Article  ADS  Google Scholar 

  61. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896 (2006)

    Article  ADS  Google Scholar 

  62. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  63. Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19 (2007)

    Article  ADS  Google Scholar 

  64. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  Google Scholar 

  65. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  66. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. http://arxiv.org/abs/quant-ph/0508168 (2005)

  67. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  68. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  69. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  70. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “quantum exam” [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360(6), 748–750 (2007)

    Article  ADS  Google Scholar 

  71. Guo, F.Z., Qin, S.J., Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56(3), 445–448 (2010)

    Article  ADS  Google Scholar 

  72. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments that help enhancing the quality of this paper. Funding by the National Natural Science Foundation of China (Grant No. 61402407) and the Natural Science Foundation of Zhejiang Province (Grant No. LY18F020007) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, CQ., Ye, TY. Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf Process 17, 252 (2018). https://doi.org/10.1007/s11128-018-2021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2021-8

Keywords

Navigation