Skip to main content
Log in

State-of-the-Art Survey of Quantum Cryptography

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In today Internet era, confidential information transmitted over an insecure channel. With the significant development in the area of quantum computing, there is a need for unconditional security in confidential information. Quantum key distribution protocols are proven secure if all devices are perfect (in terms of technologies and proper protocol operations). The major challenges in quantum communication are secret key rate, distance, cost and size of QKD devices. The purpose of this survey article is to carry out a systematic review in the area of quantum cryptography by covering various aspects of non-deterministic quantum key distribution protocols, quantum secure direct communication, semi-quantum key distribution, secure multiparty communication protocol, post-quantum cryptography and device-independent cryptography techniques. In addition, we also discussed various experimental work carried out in the area of quantum cryptography, various attacks and challenges relative to the paradigm shift from classical cryptography to quantum cryptography. Quantum cryptography will become a future replacement of classical cryptography techniques after the development of the first physical quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

PNS:

Photon number splitting

CHSH:

Clauser Horne Shimony Holt

QBER:

Quantum bit error rate

RSA:

Rivest Shamir Adleman

DES:

Data encryption standard

QKD:

Quantum key distribution

QSDC:

Quantum secure direct communication

SQKD:

Semi-quantum key distribution

SMPC:

Secure multiparty communication

ASQKD:

Authenticated semi-quantum key distribution

DIQKD:

Device independent quantum key distribution

EPR:

Einstein Podolsky Rosen

References

  1. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceeding of \(35^{th}\) annual symposium on the foundations of computer science, 20–22 Nov. NM, USA, Santa Fe, pp 124–134

  2. Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26:1484–1509

    Article  MathSciNet  MATH  Google Scholar 

  3. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the \(28^{th}\) annual symposium on theory of computation, Philadelphia, Pennsylvania, USA, May 22–24, pp 212–219

  4. Wiesner S (1983) Conjugate coding. ACM SIGACT News 15:78–88

    Article  MATH  Google Scholar 

  5. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145–195

    Article  MATH  Google Scholar 

  6. Alleaume R, Branciard C, Bouda J, Debuisschert T, Dianati M, Gisin N, Godfrey M, Grangier P, Langer T, Lutkenhaus N, Monyk C, Painchault P, Peev M, Poppe A, Pornin T, Rarity J, Renner R, Ribordy G, Riguidel M, Salvail L, Shields A, Weinfurter H, Zeilinger A (2014) Using quantum key distribution for cryptographic purposes: a survey. Theor Comput Sci 560:62–81

    Article  MathSciNet  MATH  Google Scholar 

  7. Giampouris D (2016) Short review on quantum key distribution protocols. In: Vlamos P (ed) GeNeDis computational biology and bioinformatics, advances in experimental medicine and biology, vol 988. Springer, Cham, pp 149–157

    Google Scholar 

  8. Diamanti E, Lo HK, Qi B, Yuan Z (2016) Practical challenges in quantum key distribution. npj Quantum Inf 2:16025

    Article  Google Scholar 

  9. Long GL (2017) Quantum secure direct communication: principles, current status, perspectives. In: 2017 IEEE 85th vehicular technology conference (VTC 2017 Spring) 4–7 June 2017 Sydney, Australia, pp 1–5

  10. Zhou T, Shen J, Li X, Wang C, Shen J (2018) Quantum cryptography for the future internet and the security analysis. Security and Communications Networks Article id 8214619, pp 1–7

  11. Heisenberg W (1927) Uber Den Anschaulichen Inhalt Der Quantentheoretischen Kinematik Und Mechanik. Zeitschrift Fur Physik (in German) 43(3–4):172–198

    Article  MATH  Google Scholar 

  12. Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299:802–803

    Article  MATH  Google Scholar 

  13. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777–780

    Article  MATH  Google Scholar 

  14. Vernam GS (2019) Secret signaling system, US Patent 1310719A, July 22, 1919. https://patentimages.storage.googleapis.com/5d/ae/f5/1256151a84830e/US1310719.pdf

  15. Schumacher B, Westmoreland MD (2006) Quantum mutual information and the one-time pad. Phys Rev A 74:042305

    Article  Google Scholar 

  16. Brandao FGSL, Oppenheim J (2012) The quantum one-time pad in the presence of an eavesdropper. Phys Rev Lett 108(4):040504

    Article  Google Scholar 

  17. Bennett CH, Brassard G, Robert JM (1988) Privacy amplification by public discussion. SIAM J Comput 17(2):210–229

    Article  MathSciNet  MATH  Google Scholar 

  18. Griffet C (2019) From discrete-to continuous-variable protocols for quantum key distribution, Master Thesis, Universite Libre De Bruxelles

  19. Ralph TC (1999) Continuous variable quantum cryptography. Phys Rev A 61:010303

    Article  MathSciNet  Google Scholar 

  20. Reid MD (2000) Quantum cryptography with a predetermined key, using continuous variable Einstein–Podolsky–Rosen correlations. Phys Rev A 62(6):062308-1–062308-6

    Article  Google Scholar 

  21. Hillery M (2000) Quantum cryptography with squeezed states. Phys Rev A 61:022309

    Article  MathSciNet  Google Scholar 

  22. Garcia-Patron R, Cerf NJ (2009) Continuous-variable quantum key distribution protocols over noisy channels. Phys Rev Lett 102:130501-1–130501-4

    Article  Google Scholar 

  23. Cerf NJ, Grangier P (2007) From quantum cloning to quantum key distribution with continuous variables: a review (Invited). J Opt Soc Am 24(2):324–334

    Article  Google Scholar 

  24. Cerf NJ, Levy M, Assche GV (2001) Quantum distribution of gaussian keys using squeezed states. Phys Rev A 63:052311

    Article  Google Scholar 

  25. Grosshans F, Grangier P (2002) Continuous variable quantum cryptography using coherent states. Phys Rev Lett 88:057902

    Article  Google Scholar 

  26. Grosshans F, Assche GV, Wenger J, Brouri R, Cerf NJ, Grangier P (2003) Quantum key distribution using gaussian-modulated coherent states. Nature 421:238–241

    Article  Google Scholar 

  27. Lodewyck J, Debuisschert T, Tualle-Brouri R, Grangier P (2005) Controlling excess noise in fiber optics continuous variables quantum key distribution. Phys Rev A 72:050303

    Article  Google Scholar 

  28. Weedbrook C, Lance AM, Bowen WP, Symul T, Ralph TC, Lam PK (2004) Quantum cryptography without switching. Phys Rev Lett 93(17):170504-1–170504-4

    Article  Google Scholar 

  29. Leverrier A, Grangier P (2011) Continuous-variable quantum key distribution protocols with a discrete modulation. arXiv:1002.4083

  30. Papanastasiou P, Pirandola S (2020) Continuous-variable quantum cryptography with discrete alphabets: composable security under collective gaussian attacks, pp 1–6. arXiv:1912.11418

  31. Andersen UL, Neergaard-Nielsen JS, Loock P, Furusawa A (2015) Hybrid discrete-and continuous-variable quantum information. Nat Phys 11:713–719

    Article  Google Scholar 

  32. Sanchez RG (2007) Quantum information with optical continuous variables: from Bell tests to key distribution, PhD Thesis, The Center for Quantum Information and Communication (QuIC) of the University of Bruxelles (ULB)

  33. Makarov V, Hjelme DR (2005) Faked states attack on quantum cryptosystems. J Mod Opt 52:691–705

    Article  Google Scholar 

  34. Pirandola S (2008) Symmetric collective attacks for the eavesdropping of symmetric quantum key distribution. Int J Quantum Inf 6:765–771

    Article  MATH  Google Scholar 

  35. Huttner B, Imoto N, Gisin N, Mor T (1995) Quantum cryptography with coherent states. Phys Rev A 51(3):1863–1869

    Article  Google Scholar 

  36. Lutkenhaus N (2000) Security against individual attacks for realistic quantum key distribution. Phys Rev A 61:052304-1–052304-10

    Article  Google Scholar 

  37. Liu WT, Sun SH, Liang LM, Yuan JM (2011) Proof-of-principle experiment of a modifed photon-number-splitting attack against quantum key distribution. Phys Rev A 83:042326-1–042326-5

    Article  Google Scholar 

  38. Fuchs CA, Gisin N, Griffiths RB, Niu CS, Peres A (1997) Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys Rev A 56(2):1163–1172

    Article  MathSciNet  Google Scholar 

  39. Vakhitov A, Makarov V, Hjelme DR (2001) Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. J Mod Phys 48(13):2023–2038

    MATH  Google Scholar 

  40. Dehmani M, Ez-Zahraouy H, Benyoussef A (2010) Quantum cryptography with several cloning attacks. J Comput Sci 6(7):684–688

    Article  MATH  Google Scholar 

  41. Gisin N, Fasel S, Kraus B, Zbinden H, Ribordy G (2006) Trojan-horse attacks on quantum-key-distribution-systems. Phys Rev A 73:022320-1–022320-6

    Article  Google Scholar 

  42. Kronberg DA, Molotkov SN (2010) Quantum scheme for an optimal attack on quantum key distribution protocol BB84. Bull Russ Acad Sci Phys 74(7):912–918

    Article  MATH  Google Scholar 

  43. Jain N, Anisimova E, Khan I, Makarov V, Marquardt C, Leuchs G (2014) Trojan-horse attacks threaten the security of practical quantum cryptography. New J Phys 16:123030

    Article  MathSciNet  Google Scholar 

  44. Fei YY, Meng XD, Gao M, Wang H, Ma Z (2018) Quantum man-in-the-middle attack on the calibration process of quantum key distribution. Sci Rep 8:1–10

  45. Lamas-Linares A, Kurtsiefer C (2007) Breaking a quantum key distribution system through a timing side channel. Opt Express 15(15):9388–9393

    Article  Google Scholar 

  46. Qi B, Fung CHF, Lo HK, Ma X (2007) Time-shift attack in practical quantum cryptosystems. Quantum Inf Comput 7(1):73–82

    MathSciNet  MATH  Google Scholar 

  47. Sun SH, Xu F, Jiang MS, Ma XC, Lo HK, Liang LM (2015) Effect of source tampering in the security of quantum cryptography. Phys Rev A 92(2):022304

    Article  Google Scholar 

  48. Fung CHF, Qi B, Tamaki K, Lo HK (2007) Phase-remapping attack in practical quantum-key-distribution systems. Phys Rev A 75(3):032314-1–032314-12

    Article  Google Scholar 

  49. Xu F, Qi B, Lo HK (2010) Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J Phys 12:113026

    Article  Google Scholar 

  50. Zhao Y, Fung CHF, Qi B, Chen C, Lo HK (2008) Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A 78:042333-1–042333-5

    Article  Google Scholar 

  51. Wei K, Zhang W, Tang YL, You L, Xu F (2019) Implementation security of quantum key distribution due to polarization-dependent efficiency mismatch. Phys Rev A 100(2):022325

    Article  Google Scholar 

  52. Boyer M, Liss R, Mor T (2020) Composable security against collective attacks of a modified BB4 QKD protocol with information only in one basis. Theor Comput Sci 801:96–109

    Article  MATH  Google Scholar 

  53. Lo HK, Curty M, Tamaki K (2014) Secure quantum key distribution. Nat Photonics 8:595–604

    Article  Google Scholar 

  54. Jain N, Stiller B, Khan I, Elser D, Marquardt C, Leuchs G (2016) Attacks on practical quantum key distribution systems (and how to prevent them). Contemp Phys 57(3):366–387

    Article  Google Scholar 

  55. Bennett CH, Brassard G (1984) Quantum cryptography: public key distribution and coin tossing. In: International conference on computers, systems and signal processing Bangalore, India, Dec 10–12 1984, pp 175–179

  56. Bennett CH, Brassard G (2014) Quantum cryptography: public key distribution and coin tossing. Theor Comput Sci 560:7–11

    Article  MathSciNet  MATH  Google Scholar 

  57. Chuang I, Oliver W, Shor P (2019) Introduction to quantum computing online course. https://learn-xpro.mit.edu/quantum-computing. Accessed 24 May 2020

  58. Shor PW, Preskill J (2000) Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett 85(2):441–444

    Article  Google Scholar 

  59. Biham E, Boyer M, Boykin PO, Mor T, Roychowdhury V (2006) A proof of the security of quantum key distribution. J Cryptol 19(4):381–439

    Article  MathSciNet  MATH  Google Scholar 

  60. Mayers D (2001) Unconditional security in quantum cryptography. J ACM 48:351–406

    Article  MathSciNet  MATH  Google Scholar 

  61. Scarani V, Kurtsiefer C (2014) The black paper of quantum cryptography: real implementation problems. Theor Comput Sci 560:27–32

    Article  MathSciNet  MATH  Google Scholar 

  62. Goldenberg L, Vaidman L (1995) Quantum cryptography based on orthogonal states. Phys Rev Lett 75:1239–1243

    Article  MathSciNet  MATH  Google Scholar 

  63. Peres A (1996) Quantum cryptography with orthogonal states? Phys Rev Lett 77:3264

    Article  MathSciNet  MATH  Google Scholar 

  64. Goldenberg L, Vaidman L (1996) Reply to comment: Quantum cryptography with orthogonal states, pp 1–3. arXiv:quant-ph/9604029.pdf

  65. Dan L, Chang-xing P, Dong-xiao Q, Bao-bin H, Nan Z (2009) A new attack strategy for BB84 protocol based on Breidbart basis, ChinaCom2009-network and information security symposium, 26th–27th Aug 2009, Xian, China, vol 4, pp 1–3

  66. Yong W, Huadeng W, Zhaohong L, Jinxiang H (2009) Man-in-the-middle attack on BB84 protocol and its defence. In: \(2^{nd}\) IEEE international conference on computer science and information technology (CSIT) Aug 8–11, Beijing, China, vol 2, pp 438–439

  67. An H, Liu D, Yu T (2014) A solution for beam splitter attack on BB84 protocol. In: Proceedings of the 2014 international conference on computer, communications and information technology, advances in intelligent systems research. Atlantis Press

  68. Garcia-Patron R, Wong FNC, Shapiro JH (2010) Optimal individual attack on BB84 quantum key distribution using single- photon two-qubit quantum logic. Proc SPIE Int Soc Opt Eng 7702:77020C-1–77020C-10

  69. Boyer B, Liss R, Mor T (2017) Security against collective attacks of a modified BB84 QKD protocol with information only in one basis. In: Proceedings of the \(2^{nd}\) international conference on complexity, future information systems and risk (COMPLEXIS 2017), vol 2, pp 23–29

  70. Jiang MS, Sun SH, Li CY, Liang LM (2014) Frequency shift attack on plug-and-play quantum key distribution systems. J Mod Opt 61(2):147–153

    Article  MATH  Google Scholar 

  71. Bennett CH, Brassard G, Mermin ND (1992) Quantum cryptography without Bell’s theorem. Phys Rev Lett 68:557–559

    Article  MathSciNet  MATH  Google Scholar 

  72. Waks E, Zeevi A, Yamamoto Y (2002) Security of quantum key distribution with entangled photons against individual attacks. Phys Rev A 65:052310-1–052310-16

    Article  Google Scholar 

  73. Adenier G, Ohya M, Watanabe N, Basieva I, Khrennikov AY (2012) Double blinding-attack on entanglement-based quantum key distribution protocols. AIP Conf Proc 1424:9–16

    Article  MATH  Google Scholar 

  74. Bennett CH (1992) Quantum cryptography using any two nonorthogonal states. Phys Rev Lett 68:3121–3124

    Article  MathSciNet  MATH  Google Scholar 

  75. Yonofsky NS, Mannucci MA (2008) Quantum computing for computer scientists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  76. Tamaki K, Koashi M, Imoto N (2003) Unconditionally secure key distribution based on two nonorthogonal states. Phys Rev Lett 90:167904

    Article  Google Scholar 

  77. Tamaki K, Lukenhaus N (2004) Unconditional security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel. Phys Rev A 69:032316

    Article  Google Scholar 

  78. Koashi M (2004) Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys Rev Lett 93:120501

    Article  Google Scholar 

  79. Kuppam S (2018) Modelling and analysis of quantum key distribution protocols, BB84 and B92. In: Communicating quantum processes (CQP) language and analysing in PRISM, pp 1–12. arxiv.org/pdf/1612.03706.pdf

  80. Phoenix SJD, Barnett SM, Chefles A (2000) Three-state quantum cryptography. J Mod Opt 47(2–3):507–516

    Article  MathSciNet  Google Scholar 

  81. Senekane M, Mafu M, Petruccione F (2015) Six-state symmetric quantum key distribution protocol. J Quantum Inf Sci 5:33–40

    Article  Google Scholar 

  82. Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67:661–663

    Article  MathSciNet  MATH  Google Scholar 

  83. Bell JS (1964) On the Einstein Podolsky Rosen paradox. Physics 1(3):195–200

    Article  MathSciNet  Google Scholar 

  84. Hensen B, Kalb N, Blok MS, Dreau AE, Reiserer A, Vermeulen RFL, Schouten RN, Markham M, Twitchen DJ, Goodenough K, Elkouss D, Wehner S, Taminiau TH, Hanson R (2016) Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis. Sci Rep 6(30289):1–11

    Google Scholar 

  85. Ilic N (2007) The Ekert protocol. J Phys 334:1–4

    Google Scholar 

  86. Li Q, Li Z, Chan WH, Zhang S, Liu C (2018) Blind quantum computation with identity authentication. Phys Lett A 382(14):938–941

    Article  MathSciNet  Google Scholar 

  87. Inamori H, Rallan L, Vedral V (2001) Security of EPR-based quantum cryptography against incoherent symmetric attacks. J Phys A: Math Gen 34(35):6913

    Article  MathSciNet  MATH  Google Scholar 

  88. Ling A, Peloso M, Marcikic I, Lamas-Linares A, Kurtsiefer C (2008) Experimental E91 quantum key distribution. In: Proceedings of advanced optical concepts in quantum computing, memory, and communication. Integrated Optoelectronic Devices, San Jose, California, USA, p 6903

  89. Acin A, Massar S, Pironio S (2006) Efficient quantum key distribution secure against no-signalling eavesdroppers. New J Phys 8(126):1–11

    MathSciNet  Google Scholar 

  90. Honjo T, Nam SW, Takesue H, Zhang Q, Kamada H, Nishida Y, Tadanaga O, Asobe M, Baek B, Hadfield R, Miki S, Fujiwara M, Sasaki M, Wang Z, Inoue K, Yamamoto Y (2008) Long-distance entanglement-based quantum key distribution over optical fiber. Opt Express 16(23):19118–19126

    Article  Google Scholar 

  91. Fujiwara M, Yoshino KI, Nambu Y, Yamashita T, Miki S, Terai H, Wang Z, Toyoshima M, Tomita A, Sasaki M (2014) Modified E91 protocol demonstration with hybrid entanglement photon source. Opt Express 22(11):13616–13624

    Article  Google Scholar 

  92. Li L, Li H, Li C, Chen X, Chang Y, Yang Y, Li J (2018) The security analysis of E91 protocol in collective-rotation noise channel. Int J Distrib Sens Netw 14(5):1–7

    Article  Google Scholar 

  93. Sharma A, Lenka SK (2016) E91 QKD protocol for authentication in online banking systems. Int J Bus Inf Syst 22(1):116–122

    Google Scholar 

  94. Brub D (1998) Optimal eavesdropping in quantum cryptography with six states. Phys Rev Lett 81:3018

    Article  Google Scholar 

  95. Lo HK (2001) Proof of unconditional security of six-state quantum key distribution scheme. Quantum Inf Comput 1(2):81–94

    MathSciNet  MATH  Google Scholar 

  96. Kato G, Tamaki K (2016) Security of six-state quantum key distribution protocol with threshold detectors. Sci Rep 6:1–5

    Article  Google Scholar 

  97. Garapo K, Mafu M, Petruccione F (2016) Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels. Chin Phys B 25(7):070303-1–070303-7

    Article  Google Scholar 

  98. Bechmann-Pasquinucci H, Gisin N (1999) Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Phys Rev A 59:4238

    Article  MathSciNet  Google Scholar 

  99. Azuma H, Ban M (2019) The intercept/resend attack and the collective attack on the six-state protocol of the quantum key distribution, pp 1–24. arXiv:1912.00196

  100. Scarani V, Acin A, Ribordy G, Gisin N (2004) Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys Rev Lett 92:057901

    Article  Google Scholar 

  101. Chuang I, Oliver W, Shor W (2019) Sarg04. https://en.wikipedia.org/wiki/SARG04. Accessed 24 May 2019

  102. Branciard C, Gisin N, Kraus B, Scarani V (2005) Security of two quantum cryptography protocols using the same four qubit states. Phys Rev A 72(3):032301

    Article  Google Scholar 

  103. Koashi M (2005) Security of quantum key distribution with discrete rotational symmetry. arXiv:quant-ph/0507154

  104. Fung CF, Tamaki K, Lo HK (2005) On the performance of two protocols: SARG04 and BB84. arXiv:quant-ph/0510025

  105. Lucamarini M, Patel KA, Dynes JF, Frohlich B, Sharpe AW, Dixon AR, Yuan ZL, Penty RV, Shields AJ (2013) Efficient decoy-state quantum key distribution with quantified security. Opt Express 21(21):24550–24565

    Article  Google Scholar 

  106. Comandar LC, Frohlich B, Lucamarini M, Patel KA, Sharpe AW, Dynes JF, Yuan ZL, Penty RV, Shields AJ (2014) Room temperature single-photon detectors for high bit rate quantum key distribution. Appl Phys Lett 104:021101

    Article  Google Scholar 

  107. Bennett CH, Wiesner SJ (1992) Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys Rev Lett 69:2881

    Article  MathSciNet  MATH  Google Scholar 

  108. Bechmann-Pasquinucci H, Peres A (2000) Quantum cryptography with 3-state systems. Phys Rev Lett 85(15):3313–3316

    Article  MathSciNet  MATH  Google Scholar 

  109. Inoue K, Waks E, Yamamoto Y (2002) Differential phase shift quantum key distribution. Phys Rev Lett 89(3):037902

    Article  Google Scholar 

  110. Deng FG, Long GL (2004) Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A 70(1):012311

    Article  Google Scholar 

  111. Stucki D, Fasel S, Gisin N, Thoma Y, Zbinden H (2007) Coherent one-way quantum key distribution. International Congress on optics and optoelectronics, Prague, Czech. In: Proceedings photon counting applications, quantum optics, and quantum cryptography, p 6583

  112. Pan C, Yan-Song L, Fu-Guo D, Gui-Lu L (2007) Measuring-basis encrypted quantum key distribution with four-state systems. Commun Theor Phys 47:49–52

    Article  Google Scholar 

  113. Khan MM, Murphy M, Beige A (2009) High error-rate quantum key distribution for long-distance communication. New J Phys 11:063043

    Article  Google Scholar 

  114. Noh TG (2009) Counterfactual quantum cryptography. Phys Rev Lett 103:230501

    Article  MathSciNet  Google Scholar 

  115. Gao F, Liu B, Wen QY, Chen H (2012) Flexible quantum private queries based on quantum key distribution. Opt Express 20(16):17411–17420

    Article  Google Scholar 

  116. Wei CY, Gao F, Wen QY, Wang TY (2014) Practical quantum private query of blocks based on unbalanced-state Bennett–Brassard-1984 quantum-key-distribution protocol. Sci Rep 4:7537-1–7537-7

    Article  Google Scholar 

  117. Gao F, Liu B, Huang W, Wen QY (2015) Post processing of the oblivious key in quantum private query. IEEE J Sel Top Quantum Electron 21(3):6600111

    Article  Google Scholar 

  118. Beige A, Englert BG, Kurtsiefer C, Weinfurter H (2002) Secure communication with a publicly known key. Acta Phys Pol A 101:357–368

    Article  MATH  Google Scholar 

  119. Hong-Mei H (2015) Quantum secure direct communication protocol based on cluster entangled state. In: \(10^{th}\) international conference on P2P, parallel, grid, cloud and internet computing (3PGCIC). Krakow, Poland, pp 440–443

  120. Bostrom K, Felbinger T (2002) Deterministic secure direct communication using entanglement. Phys Rev Lett 89:187902

    Article  Google Scholar 

  121. Wojcik A (2003) Eavesdropping on the “Ping-pong” quantum communication protocol. Phys Rev Lett 90:157901

    Article  Google Scholar 

  122. Cai QY (2003) The “ping-pong” protocol can be attacked without eavesdropping. Phys Rev Lett 91:109801

    Article  Google Scholar 

  123. Zhang Z, Man Z, Li Y (2004) Improving Wojcik’s eavesdropping attack on ping-pong protocol. Phys Lett A 333:46–50

    Article  MathSciNet  MATH  Google Scholar 

  124. Bostroem K, Felbinger T (2008) On the security of the ping-pong protocol. Phys Lett A 372:3953–3956

    Article  MathSciNet  MATH  Google Scholar 

  125. Fu-Guo D, Xi-Han L, Chun-Yan L, Ping Z, Hong-Yu Z (2007) Eavesdropping on the “Ping-Pong” quantum communication protocol freely in a noise channel. Chin Phys 16:277–281

    Article  Google Scholar 

  126. Lucamarini M, Mancini S (2005) Secure deterministic communication without entanglement. Phys Rev Lett 94:140501-1–140501-4

    Article  Google Scholar 

  127. Han YG, Yin ZQ, Li HW, Chen W, Wang S, Guo GC, Han ZF (2014) Security of modified ping-pong protocol in noisy and lossy channel. Sci Rep 4:4936

    Article  Google Scholar 

  128. Chamoli A, Bhandari CM (2009) Secure direct communication based on ping-pong protocol. Quantum Inf Process 8:347–356

    Article  MathSciNet  MATH  Google Scholar 

  129. Naseri M (2010) Comment on: Secure direct communication based on ping-pong protocol. Quantum Inf Process 9:693–698

    Article  MathSciNet  MATH  Google Scholar 

  130. Chun-Yan L, Hong-Yu Z, Yan W, Fu-Guo D (2005) Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett 22:1049–1052

    Article  Google Scholar 

  131. Li XH, Deng FG, Li CY, Liang YJ, Zhou P, Zhou H (2006) Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc 49(4):1354–1359

    Google Scholar 

  132. Li J, Zhou Z, Wang N, Tian Y, Yang YG, Zheng Y (2019) Deterministic quantum secure direct communication protocol based on hyper-entangled state. IEEE Access 7:43948–43955

    Article  Google Scholar 

  133. Kwiat PG (1997) Hyper-entangled states. J Mod Opt 44(11–12):2173–2184

    Article  MathSciNet  MATH  Google Scholar 

  134. Zhang W, Ding DS, Sheng YB, Zhou L, Shi BS, Guo GC (2017) Quantum secure direct communication with quantum memory. Phys Rev Lett 118:2205011–2205016

    Article  Google Scholar 

  135. Lee H, Lim J, Yang HJ (2006) Quantum direct communication with authentication. Phys Rev A 73:042305

    Article  Google Scholar 

  136. Min-Jie W, Wei P (2008) Quantum secure direct communication based on authentication. Chin Phys Lett 25(11):3860–3863

    Article  Google Scholar 

  137. Dan L, Chang-Xing P, Dong-Xiao Q, Nan Z (2010) A new quantum secure direct communication scheme with authentication. Chin Phys Lett 27:0503061–0503063

    Article  Google Scholar 

  138. Huang D, Chen Z, Guo Y, Lee MH (2007) Quantum secure direct communication based on chaos with authentication. J Phys Soc Jpn 76:124001-1–124001-4

    Article  Google Scholar 

  139. Chen XB, Wen QY, Guo FZ, Sun Y, Xu G, Zhu FC (2008) Controlled quantum secure direct communication with W state. Int J Quantum Inf 6:899–906

    Article  MATH  Google Scholar 

  140. Chen ZN, Qin Z, Lu L (2009) A quantum secure direct communication with authentication. Inf Technol J 8(7):1027–1032

    Article  Google Scholar 

  141. Yang XY, Ma Z, Lu X, Li HX (2009) Quantum secure direct communication based on partially entangled states. In: Fifth international conference on information assurance and security, 18–20 Aug, vol 2, pp 11–14

  142. Yu CH, Guo GD, Lin S (2013) Quantum secure direct communication with authentication using two nonorthogonal states. Int J Theor Phys 52:1937–1945

    Article  MathSciNet  Google Scholar 

  143. Yang CW, Hwang T, Lin TH (2013) Modification attack on QSDC with authentication and the improvement. Int J Theor Phys 52:2230–2234

    Article  MathSciNet  Google Scholar 

  144. Hu JY, Yu B, Jing MY, Xiao LT, Jia ST, Qin GQ, Long GL (2016) Experimental quantum secure direct communication with single photons. Light Sci Appl 5:e16144

    Article  Google Scholar 

  145. Sarvaghad-Moghaddam M (2019) Efficient controlled bidirectional quantum secure direct communication using entanglement swapping in a network. arXiv:1902.11188 1–15

  146. Nguyen BA (2004) Quantum dialogue. Phys Lett A 328:6–10

    Article  MathSciNet  MATH  Google Scholar 

  147. Hong C, Yang H (2006) Comment on “Quantum dialogue protocol”, pp 1–4. arXiv:quant-ph/0606174

  148. Zhong-Xiao M, Zhan-Jun Z, Yong L (2005) Quantum dialogue revisited. Chin Phys Lett 22(1):22–24

    Article  Google Scholar 

  149. YuGuang Y, QiaoYan W (2007) Quasi-secure quantum dialogue using single photons. Sci China Press G Phys Mech Astron 50(5):558–562

    Article  Google Scholar 

  150. Tan YG, Cai QY (2008) Classical correlation in quantum dialogue. Int J Quantum Inf 6(2):325–329

    Article  Google Scholar 

  151. Xia Y, Fu CB, ZHANG S, Hong SK, Yeon KH, Um CI (2006) Quantum dialogue by using the GHZ state. J Korean Phys Soc 48:24–27

    Google Scholar 

  152. Yan X, Jie S, Jing N, He-Shan S (2007) Controlled secure quantum dialogue using a pure entangled GHZ states. Commun Theor Phys 48(5):841–846

    Article  Google Scholar 

  153. Cao G, Jiang M (2017) Multi-party quantum dialogue protocol based on multi-particle GHZ states, 2017 Chinese Automation Congress (CAC), 20–22 Oct 2017, Jinan, China, pp 1614–1618

  154. Gong L, Tian C, Li J, Zou X (2018) Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf Process 17(331):1–12

    MathSciNet  MATH  Google Scholar 

  155. Chou YH, Zeng GJ, Chang ZH, Kuo SY (2018) Dynamic group multi-party quantum key agreement. Sci Rep 8:4633

    Article  Google Scholar 

  156. Boyer M, Kenigsberg D, Mor T (2007) Quantum key distribution with classical Bob. Phys Rev Lett 99(14):140501

    Article  MathSciNet  MATH  Google Scholar 

  157. Boyer M, Gelles R, Kenigsberg D, Mor T (2009) Semiquantum key distribution. Phys Rev A 79:032341

    Article  MathSciNet  MATH  Google Scholar 

  158. Krawec WO (2014) Restricted attacks on semi-quantum key distribution protocols. Quantum Inf Process 13:2417–2436

    Article  MathSciNet  MATH  Google Scholar 

  159. Krawec WO (2015) Mediated semi-quantum key distribution. Phys Rev A 91:032323

    Article  Google Scholar 

  160. Zou X, Qiu D, Li L, Wu L, Li L (2009) Semiquantum-key distribution using less than four quantum states. Phys Rev A 79:0522312

    Article  Google Scholar 

  161. Lu H, Cai QY (2008) Quantum key distribution with classical alice. Int J Quantum Inf 6(6):1195–1202

    Article  MATH  Google Scholar 

  162. Zhang W, Qiu D, Mateus P (2008) Security of a single-state semi-quantum key distribution protocol. Quantum Inf Process 17(6):1–21

    MathSciNet  MATH  Google Scholar 

  163. Xian-Zhou Z, Wei-Gui G, Yong-Gang T, Zhen-Zhong R, Xiao-Tian G (2009) Quantum key distribution series network protocol with M-classical Bobs. Chin Phys B 18:2143

    Article  Google Scholar 

  164. Jian W, Sheng Z, Quan Z, Chao-Jing T (2011) Semiquantum key distribution using entangled states. Chin Phys Lett 28:100301

    Article  Google Scholar 

  165. Li L, Qiu D, Mateus P (2013) Quantum secret sharing with classical bobs. J Phys A: Math Theor 46:045304-1–045304-11

    Article  MathSciNet  MATH  Google Scholar 

  166. Yu KF, Yang CW, Liao CH, Hwang T (2014) Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf Process 13:1457–1465

    Article  MathSciNet  MATH  Google Scholar 

  167. Luo YP, Hwang T (2015) Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf Process 15:947–958

    Article  MathSciNet  MATH  Google Scholar 

  168. Zou X, Qiu D, Zhang S, Mateus P (2015) Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf Process 14:2981–2996

    Article  MathSciNet  MATH  Google Scholar 

  169. Chou WH, Hwang T, Gu J (2016) Semi-quantum private comparison protocol under an almost-dishonest third party, pp 1–18. arXiv:1607.07961

  170. Lu H, Barbeau M, Nayak A (2017) Economic no-key semi-quantum direct communication protocol. IEEE Globecom Workshops, Singapore, 4–8 Dec 2017, pp 1–7

  171. Boyer M, Katz M, Liss R, Mor T (2017) Experimentally feasible protocol for semiquantum key distribution. Phys Rev A 96(6):062335-1–062335-6

    Article  Google Scholar 

  172. Thapliyal K, Sharma RD, Pathak A (2018) Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int J Quantum Inf 16(5):1850047-1–1850047-27

    Article  MathSciNet  MATH  Google Scholar 

  173. Krawec WO (2015) Security proof of a semi-quantum key distribution protocol. In: IEEE international symposium on information theory (ISIT), Hong Kong, China 14–19 June 2015, pp 686–690

  174. Krawec WO (2016) Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf Process 15(5):2067–2090

    Article  MathSciNet  MATH  Google Scholar 

  175. Iqbal H, Krawec WO (2019) High-dimensional semi-quantum cryptography, pp 1–29. arXiv:1907.11340.pdf

  176. Tsai CW, Yang CW, Lee NY (2019) Semi-quantum secret sharing protocol using W-state. Mod Physi Lett A 34(27):1950213-1–1950213-12

  177. Iqbal H, Krawec WO (2019) Semi-quantum cryptography, pp 1–60. arXiv:1910.05368.pdf

  178. Lin PH, Tsai CW, Hwang T (2019) Mediated semi-quantum key distribution using single photons. Annalen Der Physik 531(8):1800347-1–1800347-7

  179. Wen XJ, Zhao XQ, Gong LH, Zhou NR (2019) A semi-quantum authentication protocol for message and identity. Laser Phys Lett 16:075206-1–075206-10

    Article  Google Scholar 

  180. Tao Z, Chang Y, Zhang S, Dai J, Li X (2019) Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int J Theor Phys 58:2986–2993

    Article  MATH  Google Scholar 

  181. Sun Y, Yan L, Chang Y, Zhang S, Shao T, Zhang Y (2019) Two semi-quantum secure direct communication protocols based on Bell states. Mod Phys Lett A 34(1):1950004-1–1950004-10

    Article  Google Scholar 

  182. Yang CW (2020) Efficient and secure semi-quantum secure direct communication protocol against double Cnot attack. Quantum Inf Process 19:1–15

    MathSciNet  Google Scholar 

  183. Zhou NR, Zhu KN, Bi W, Gong LH (2019) Semi-quantum identifcation. Quantum Inf Process 18:197-1–197-17

    Article  Google Scholar 

  184. Yan L, Sun YH, Chang Y, Zhang SB, Wan GG, Sheng ZW (2018) Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf Process 17:315-1–315-12

    Article  MathSciNet  MATH  Google Scholar 

  185. Bechmann-Pasquinucci H, Tittel W (2000) Quantum cryptography using larger alphabets. Phys Rev A 61(6):0623081–06230812

    Article  MathSciNet  Google Scholar 

  186. Tan YG, Lu H, Cai QY (2009) Comment on “Quantum key distribution with classical Bob”. Phys Rev Lett 102(9):098901–1

    Article  MathSciNet  Google Scholar 

  187. Boyer M, Mor R (2011) Comment on Semiquantum-key distribution using less than four quantum states. Phys Rev A 83:046301-1–046301-2

    Article  Google Scholar 

  188. Zou X, Qiu D (2011) Reply to “comment on ‘semiquantum-key distribution using less than four quantum states”’. Phys Rev A 83:046302-1–046302-2

    Article  Google Scholar 

  189. Gurevich P (2013) Experimental quantum key distribution with classical Alice. The Technion-Israel Institute of Technology, Thesis Master of Science in Computer Science

  190. Nie YY, Li YH, Wang ZS (2013) Semi-quantum information splitting using GHZ-type states. Quantum Inf Process 12(1):437–448

    Article  MathSciNet  MATH  Google Scholar 

  191. Maitra A, Paul G (2013) Eavesdropping in semiquantum key distribution protocol. Inf Process Lett 113(12):418–422

    Article  MathSciNet  MATH  Google Scholar 

  192. Boyer M, Mor T (2015) On the robustness of quantum key distribution with classical Alice (Photons-based protocol). In: Proceedings of the ninth international conference on quantum, nano/bio, and micro technologies, ICQNM2015, Venice, Italy, vol 9, pp 29–34

  193. Xie C, Li L, Qiu D (2015) A novel semi-quantum secret sharing scheme of specific bits. Int J Theor Phys 54(10):3819–3824

    Article  MathSciNet  MATH  Google Scholar 

  194. Krawec WO (2015) Semi-quantum key distribution: Protocols, security analysis, and new models, PhD thesis, Stevens Institute of Technology

  195. Yin A, Fu F (2016) Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int J Theor Phys 55(9):4027–4035

    Article  MathSciNet  MATH  Google Scholar 

  196. Meslouhi A, Hassouni Y (2017) Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf Process 16(18):1–17

    MathSciNet  MATH  Google Scholar 

  197. Zhang W, Qiu D (2017) A single-state semi-quantum key distribution protocol and its security proof, pp 1-12. arXiv:1612.03087

  198. Shukla C, Thapliyal K, Pathak A (2017) Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf Process 16(12):2951–29519

    Article  MathSciNet  MATH  Google Scholar 

  199. Gao X, Zhang S, Chang Y (2017) Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int J Theor Phys 56(8):2512–2520

    Article  MATH  Google Scholar 

  200. Zhang MH, Li HF, Xia ZQ, Feng XY, Peng JY (2017) Semiquantum secure direct communication using EPR pairs. Quantum Inf Process 16(5):117-1–117-14

    Article  MATH  Google Scholar 

  201. Yin A, Wang Z, Fu F (2017) A novel semi-quantum secret sharing scheme based on Bell states. Mod Phys Lett B 31(13):1750150-1–1750150-6

    Article  Google Scholar 

  202. Zhu KN, Zhou NR, Wang YQ, Wen XJ (2018) Semi-quantum key distribution protocols with GHZ states. Int J Theor Phys 57(12):3621–3631

    Article  MathSciNet  MATH  Google Scholar 

  203. He J, Li Q, Wu C, Chan WH, Zhang S (2018) Measurement-device-independent semiquantum key distribution. Int J Quantum Inf 16(2):1850012-1–1850012-10

    Article  MATH  Google Scholar 

  204. Krawec WO (2018) Practical security of semi-quantum key distribution. In: Proceeding of quantum information science, sensing, and computation X, International Society for Optics and Photonics, vol 10660, p 1066009

  205. Xie C, Li L, Situ H, He J (2018) Semi-quantum secure direct communication scheme based on Bell states. Int J Theor Phys 57(6):1881–1887

    Article  MathSciNet  MATH  Google Scholar 

  206. Liu L, Xiao M, Song X (2018) Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel. Quantum Inf Process 17(12):342-1–342-17

    Article  MathSciNet  MATH  Google Scholar 

  207. Zhang W, Qiu D, Mateus P (2018) Security of a single-state semi-quantum key distribution protocol. Quantum Inf Process 17:135-1–135-21

    Article  MathSciNet  MATH  Google Scholar 

  208. Yan-Feng L (2018) Semi-quantum private comparison using single photons. Int J Theor Phys 57(10):3048–3055

    Article  MathSciNet  MATH  Google Scholar 

  209. Ye TY, Ye CQ (2018) Measure-resend semi-quantum private comparison without entanglement. Int J Theor Phys 57(12):3819–3834

    Article  MathSciNet  MATH  Google Scholar 

  210. Zhao XQ, Chen HY, Wang YQ, Zhou NR (2019) Semi-quantum Bi-signature scheme based on W states. Int J Theor Phys 58(10):3239–3251

    Article  MathSciNet  MATH  Google Scholar 

  211. Yan LL, Zhang SB, Chang Y, Sheng ZW, Yang F (2019) Mutual semiquantum key agreement protocol using Bell states. Mod Phys Lett A 34(35):1950294

  212. Yan L, Zhang S, Chang Y, Sheng Z, Sun Y (2019) Semi-quantum key agreement and private comparison protocols using Bell states. Int J Theor Phys 58:3852–3862

  213. Lu H, Barbeau M, Nayak A (2019) Keyless semi-quantum point-to-point communication protocol with low resource requirements. Sci Rep 9(1):64-1–64-15

    Google Scholar 

  214. Tsai CW, Yang CW, Lee NY (2019) Lightweight mediated semi-quantum key distribution protocol. Mod Phys Lett A 34:1950281-1–1950281-13

    Article  Google Scholar 

  215. Yao AC (1982) Protocols for secure computations. In: Proceedings of the \(23^{rd}\) annual IEEE symposium on foundations of computer science (SCFS1982). IEEE Computer Society, Washington, DC, USA, pp 160–164

  216. Zhang WW, Li D, Zhang KJ, Zuo HJ (2013) A quantum protocol for millionaire problem with Bell states. Quantum Inf Process 12:2241–2249

    Article  MathSciNet  MATH  Google Scholar 

  217. Mayers D (1997) Unconditionally secure quantum bit commitment is impossible. Phys Rev Lett 78:3414

    Article  Google Scholar 

  218. Lo HK, Chau HF (1997) Is quantum bit commitment really possible? Phys Rev Lett 78:3410

    Article  Google Scholar 

  219. Dong L, Xiu XM, Gao YJ, Chi F (2008) Multiparty controlled deterministic secure quantum communication through entanglement swapping. Int J Mod Phys C 19(11):1673–1681

    Article  MATH  Google Scholar 

  220. Shi RH, Zhong H (2013) Multi-party quantum key agreement with Bell states and bell measurements. Quantum Inf Process 12:921–932

    Article  MathSciNet  MATH  Google Scholar 

  221. Liu Y, Chen TY, Wang LJ, Liang H, Shentu GL, Wang J, Cui K, Yin HL, Liu NL, Li L, Ma X, Pelc JS, Fejer MM, Peng CZ, Zhang Q, Pan JW (2013) Experimental measurement-device-independent quantum key distribution. Phys Rev Lett 111(13):130502

    Article  Google Scholar 

  222. Sun Z, Zhang C, Wang B, Li Q, Long D (2013) Improvements on “multiparty quantum key agreement with single particles.”. Quantum Inf Process 12:3411–3420

    Article  MathSciNet  MATH  Google Scholar 

  223. Yin XR, Ma WP, Shen DS, Wang LL (2013) Three-party quantum key agreement with bell states. Acta Phys Sin 62(17):170304-1–170304-6

  224. Yin XR, Ma WP, Liu WY (2013) Three-party quantum key agreement with two-photon entanglement. Int J Theor Phys 52:3915–3921

  225. Zhu ZC, Hu AQ, Fu AM (2016) Participant attack on three-party quantum key agreement with two-photon entanglement. Int J Theor Phys 55(1):55–61

    Article  MATH  Google Scholar 

  226. Shukla C, Alam N, Pathak A (2014) Protocols of quantum key agreement solely using bell states and Bell measurement. Quantum Inf Process 13:2391–2405

    Article  MathSciNet  MATH  Google Scholar 

  227. Zhu ZC, Hu AQ, Fu AM (2015) Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf Process 14(11):4245–4254

    Article  MathSciNet  MATH  Google Scholar 

  228. Gu J, Hwang T (2017) Comment on improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. In: IEEE conference on dependable and secure computing, 7–10 Aug 2017. Taiwan, Taipei, pp 520–521

  229. Luo QB, Yang GW, She K, Niu WN, Wang YQ (2014) Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf Process 13(10):2343–2352

    Article  MathSciNet  MATH  Google Scholar 

  230. Huang W, Wen QY, Liu B, Su Q, Gao F (2014) Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf Process 13:1651–1657

    Article  MathSciNet  MATH  Google Scholar 

  231. Smania M, Elhassan AM, Tavakoli A, Bourennane M (2016) Experimental quantum multiparty communication protocols. NPJ Quantum Inf 2:16010-1–16010-4

    Article  Google Scholar 

  232. Sun Z, Yu J, Wang P (2016) Efficient multi-party quantum key agreement by cluster states. Quantum Inf Process 15:373–384

  233. Sun Z, Zhang C, Wang P, Yu J, Zhang Y, Long D (2016) Multi-party quantum key agreement by an entangled six-qubit state. Int J Theor Phys 55(3):1920–1929

  234. Sun Z, Huang J, Wang P (2016c) Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf Process 15:2101–2111

    Article  MathSciNet  MATH  Google Scholar 

  235. Liu B, Xiao D, Jia HY (2016) Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Inf Process 15:2113–2124

    Article  MathSciNet  MATH  Google Scholar 

  236. Huang W, Su Q, Xu B, Liu B, Fan F, Jia HY, Yang YH (2016) Improved multiparty quantum key agreement in travelling mode. Sci China Phys Mech Astron 59(12):120311-1–120311-10

    Article  Google Scholar 

  237. Huang W, Su Q, Liu B, He YH, Fan F, Xu BJ (2017) Efficient multiparty quantum key agreement with collective detection. Sci Rep 7:15264-1–15264-9

    Google Scholar 

  238. Liu WJ, Chen ZY, Ji S, Wang HB, Zhang J (2017) Multi-party semi-quantum key agreement with delegating quantum computation. Int J Theor Phys 56(10):3164–3174

    Article  MathSciNet  MATH  Google Scholar 

  239. Wang P, Sun Z, Sun X (2017) Multi-party quantum key agreement protocol secure against collusion attack. Quantum Inf Process 16:170-1–170-10

    Article  MathSciNet  MATH  Google Scholar 

  240. Zhou NR, Zhu KN, Zou XF (2019) Multiparty semiquantum key distribution protocol with four-particle cluster states. Ann Phys 531(8):1800520-1–1800520-12

    Google Scholar 

  241. Sun Z, Cheng R, Wu C, Zheng C (2019) New fair multiparty quantum key agreement secure against collusive attacks. Sci Rep 9:17177-1–17177-8

    Article  Google Scholar 

  242. Cao H, Ma W (2017) Multiparty quantum key agreement based on quantum search algorithm. Sci Rep 7:45046-1–45046-10

    Google Scholar 

  243. Cao WF, Zhen YZ, Zheng YL, Li L, Chen ZB, Liu NL, Chen K (2018) One-sided measurement-device-independent quantum key distribution. Phys Rev A 97:012313

    Article  Google Scholar 

  244. Sun Z, Wu C, Zheng S, Zhang C (2019) Efficient multiparty quantum key agreement with a single d-level quantum system secure against collusive attack. IEEE Access 7:102377–102385

    Article  Google Scholar 

  245. Huang WC, Yang YK, Jiang D, Chen LJ (2019) Efficient travelling-mode quantum key agreement against participant’s attacks. Sci Rep 9:16421-1–16421-9

    Google Scholar 

  246. He WT, Wang J, Zhang TT, Alzahrani F, Hobiny A, Alsaedi A, Hayat T, Deng FG (2019) High-efficiency three-party quantum key agreement protocol with quantum dense coding and Bell states. Int J Theor Phys 58:2834–2846

    Article  MathSciNet  MATH  Google Scholar 

  247. Jo Y, Park HS, Lee SW, Son W (2019) Efficient high-dimensional quantum key distribution with hybrid encoding. Entropy 21:80

    Article  Google Scholar 

  248. Mohajer R, Eslami Z (2017) Cryptanalysis of a multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf Process 16:197-1–197-9

    Article  MathSciNet  MATH  Google Scholar 

  249. Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V (2010) Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics 4:686–689

    Article  Google Scholar 

  250. Mayers D, Yao A (1998) Quantum cryptography with imperfect apparatus. In: Proceeding \(39^{th}\) annual symposium on foundations of computer science, Palo Alto, CA, USA, 8–11 Nov 1998, pp 1–7

  251. Barrett J, Hardy L, Kent A (2005) No signalling and quantum key distribution. Phys Rev Lett 95:010503

    Article  Google Scholar 

  252. Acin A, Masanes L (2016) Certified randomness in quantum physics. Nature 540:213–219

    Article  Google Scholar 

  253. Clauser JF, Horne MA, Shimony A, Holt RA (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23:880–884

    Article  MATH  Google Scholar 

  254. Colbeck R (2006) Quantum and relativistic protocols for secure multi-party computation, PhD Thesis, University of Cambridge

  255. Pironio S, Acin A, Brunner N, Gisin N, Massar S, Scarani V (2009) Device-independent quantum key distribution secure against collective attacks. New J Phys 11:045021-1–045021-26

    Article  Google Scholar 

  256. Acin A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V (2007) Device-independent security of quantum cryptography against collective attacks. Phys Rev Lett 98:230501-1–230501-4

    Article  Google Scholar 

  257. Lucamarini M, Vallone G, Gianani I, Mataloni P, Giuseppe GD (2012) Device-independent entanglement-based Bennett 1992 protocol. Phys Rev A 86(3):032325

    Article  Google Scholar 

  258. Branciard C, Cavalcanti EG, Walborn SP, Scarani V, Wiseman HM (2012) One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys Rev A 85(1):010301

    Article  Google Scholar 

  259. Tomamichel M, Fehr S, Kaniewski J, Wehner S (2013) One-sided Device-independent QKD and position-based cryptography from monogamy games, advances in cryptology-EUROCRYPT. In: 32nd annual international conference on the theory and applications of cryptographic techniques, Athens, Greece, May 26–30. Lecture notes in computer science (LNCS), vol 7881, pp 609–625

  260. Walk N, Hosseini S, Geng J, Thearle O, Haw JY, Armstrong S, Assad SM, Janousek J, Ralph TC, Symul T, Wiseman HM, Lam PK (2016) Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica 3(6):634–642

    Article  Google Scholar 

  261. Lo HK, Curty M, Qi B (2012) Measurement-device-independent quantum key distribution. Phys Rev Lett 108(13):130503

    Article  Google Scholar 

  262. Xu F, Curty M, Qi B, Lo HK (2015) Measurement-device-independent quantum cryptography. IEEE J Sel Top Quantum Electronics 21(3):148–158

    Article  Google Scholar 

  263. Tang Z, Wei K, Bedroya O, Qian L, Lo HK (2016) Experimental measurement-device-independent quantum key distribution with imperfect sources. Phys Rev A 93:042308

    Article  Google Scholar 

  264. Valivarthi R, Umesh P, John C, Owen KA, Verma VB, Nam SW, Oblak D, Zhou Q, Tittel W (2019) Measurement-device-independent quantum key distribution coexisting with classical communication. Quantum Sci Technol 4(4):045002

    Article  Google Scholar 

  265. Xu F, Curty M, Qi B, Lo HK (2013) Practical aspects of measurement-device-independent quantum key distribution. New J Phys 15:113007

    Article  MATH  Google Scholar 

  266. Roberts GL, Lucamarini M, Yuan ZL, Dynes JF, Comandar LC, Sharpe AW, Shields AJ, Curty M, Puthoor IV, Andersson E (2017) Experimental measurement-device-independent quantum digital signatures. Nat Commun 8:1098

    Article  Google Scholar 

  267. Hu XL, Cao Y, Yu ZW, Wang XB (2018) Measurement-device-independent quantum key distribution over asymmetric channel and unstable channel. Sci Rep 8:17634

    Article  Google Scholar 

  268. Qiao Y, Wang G, Li Z, Xu B, Guo H (2019) Monitoring an untrusted light source with single-photon detectors in measurement-device-independent quantum key distribution. Phys Rev A 99(5):052302

    Article  Google Scholar 

  269. Cui ZX, Zhong W, Zhou L, Sheng YB (2019) Measurement-device-independent quantum key distribution with hyper-encoding. Sci China Phys Mech Astron 62:110311

    Article  Google Scholar 

  270. Dellantonio L, Sorensen AS, Bacco D (2018) High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys Rev A 98:062301

    Article  Google Scholar 

  271. Pawlowski M, Brunner N (2011) Semi-device-independent security of one-way quantum key distribution. Phys Rev A 84(1):010302

    Article  Google Scholar 

  272. Yang W, Wan-Su B, Hong-Wei L, Chun Z, Yuan L (2014) Security of a practical semi-device-independent quantum key distribution protocol against collective attacks. Chin Phys B 23(8):080303

    Article  Google Scholar 

  273. Dall’Arno M, Passaro E, Gallego R, Pawlowski M, Acin A (2015) Detection loophole attacks on semi-device-independent quantum and classical protocols. Quantum Inf Comput 15:0037

    MathSciNet  Google Scholar 

  274. Chaturvedi A, Ray M, Veynar R, Pawlowski M (2018) On the security of semi-device-independent QKD protocols. Quantum Inf Process 17:131

    Article  MATH  Google Scholar 

  275. Woodhead E, Lim CCW, Pironio S (2012) Semi-device-independent QKD based on BB84 and a CHSH-type estimation. In: \(7^{th}\) conference, TQC: conference on quantum computation, communication, and cryptography, Tokyo, Japan, May 17–19, Theory of Quantum Computation, Communication, and Cryptography, vol 7, pp 107–115

  276. Lim CCW, Korzh B, Martin A, Bussieres F, Thew R, Zbinden H (2014) Detector-device-independent quantum key distribution. Appl Phys Lett 105:221112

    Article  Google Scholar 

  277. Gonzalez P, Rebon L, Silva TFD, Figueroa M, Saavedra C, Curty M, Lima G, Xavier GB, Nogueira WAT (2015) Quantum key distribution with untrusted detectors. Phys Rev A 92(2):022337

    Article  Google Scholar 

  278. Wei K, Liu H, Ma H, Yang X, Zhang Y, Sun Y, Xiao J, Ji Y (2017) Feasible attack on detector-device-independent quantum key distribution. Sci Rep 7:449-1–449-8

    Google Scholar 

  279. Qi B, Siopsis G (2015) Loss-tolerant position-based quantum cryptography. Phys Rev A 91:042337

    Article  Google Scholar 

  280. Sajeed S, Huang A, Sun S, Xu F, Makarov V, Curty M (2016) Insecurity of detector-device-independent quantum key distribution. Phys Rev Lett 117(25):250505

    Article  Google Scholar 

  281. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654

    Article  MathSciNet  MATH  Google Scholar 

  282. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126

  283. Rivest AL, Adleman L, Dertouzos M (1978b) On data banks and privacy homomorphisms. Found Secure Comput 4(11):169–180

    MathSciNet  Google Scholar 

  284. Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48(177):203–209

    Article  MathSciNet  MATH  Google Scholar 

  285. Buchmann J, Williams HC (1988) A key-exchange system based on imaginary quadratic fields. J Cryptol 1(2):107–118

    Article  MathSciNet  MATH  Google Scholar 

  286. Bernstein DJ (2009) Introduction to post-quantum cryptography. In: Bernstein DJ, Buchmann J, Dahmen E (eds) Post-quantum cryptography. Springer, Berlin, pp 1–14

    Chapter  MATH  Google Scholar 

  287. Bernstein DJ, Lange T (2017) Post-quantum cryptography. Nature 549:188–194

    Article  Google Scholar 

  288. McEliece RJ (1978) A public-key cryptosystem based on algebraic coding theory. The deep space network progress report, DSN PR 42-44, pp 114–116

  289. Overbeck R, Sendrier N (2009) Code-based cryptography. Book chapter in post-quantum cryptography. Springer, Berlin, pp 95–145

    Book  MATH  Google Scholar 

  290. Hoffstein J, Pipher J, Silverman JH (1998) NTRU: a ring-based public key cryptosystem. In: International algorithmic number theory symposium ANTS 1998: algorithmic number theory. Lecture notes in computer science, LNCS, Springer, vol 1423, pp 267–288

  291. Biasse JF, Song F (2016) Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA’16), pp 893–902

  292. Cramer R, Ducas L, Wesolowski B (2017) Short stickelberger class relations and application to ideal-SVP. In: Proceeding of international association for cryptologic research (EUROCRYPT 2017), Lecture notes in computer science (LNCS), vol 10210, pp 324–348

  293. Laarhoven T (2015) Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In: 35th annual cryptology conference on advances in cryptology (CRYPTO 2015), Santa Barbara, CA, Lecture notes in computer science, vol 9215, pp 3–22

  294. Laarhoven T, Weger BD (2015) Faster sieving for shortest lattice vectors using spherical locality-sensitive hashing. In: Proceedings of \(4^{th}\) international conference on cryptology and information security in Latin America (LATINCRYPT 2015), Lecture notes in computer science book series (LNCS), vol 9230, pp 101–118

  295. Becker A, Ducas L, Gama N, Laarhoven T (2016) New directions in nearest neighbor searching with applications to lattice sieving. In: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms (SODA 2016), Arlington, VA, USA, January 10–12 2016, pp 10–24

  296. Lamport L (1979) Constructing digital signatures from a one way function. In: SRI international computer science laboratory. Report no SRI-CSL-98, vol 1423, pp 1–7. https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Constructing-Digital-Signatures-from-a-One-Way-Function.pdf

  297. Merkle RC (1989) A certified digital signature. In: Conference on the theory and application of cryptology CRYPTO 1989: advances in cryptology-CRYPTO’89. Lecture notes in computer science book series (LNCS), vol 435, pp 218–238

  298. Dods C, Smart NP, Stam M (2005) Hash based digital signature schemes. In: 10th proceeding of IMA international conference on cryptography and coding (IMACC 2005), Lecture notes in computer science. Springer, Berlin, vol 3796, pp 96–115

  299. Hulsing A (2013) \({W}-{OTS}^+-\)shorter signatures for hash-based signature schemes. In: Proceeding of \(6^{th}\) international conference on cryptology in Africa, Cairo, Egypt, June 22–24, Lecture notes in computer science. Springer, Berlin, Heidelberg, vol 7918, pp 173–188

  300. Patarin J (1997) The oil and vinegar signature scheme. Presented at the Dagstuhl workshop on cryptography

  301. Ding J, Schmidt D (2005) Rainbow, a new multivariable polynomial signature scheme. In: International conference on applied cryptography and network security—ACNS 2005. Lecture notes in computer science, Springer, vol 3531, pp 164–175

  302. Patarin J, Courtois N, Goubin L (2001) QUARTZ, 128-bit long digital signatures, cryptographers track at the RSA conference, CT-RSA 2001: topics in cryptology, CT-RSA2001, Lecture notes in computer science (LNCS). Springer, Berlin, Heidelberg, vol 2020, pp 282–297

  303. NIST Post Quantum Cryptography. https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates. 26 Feb 2020

  304. Chen L, Jordan S, Liu YK, Moody D, Peralta R, Perlner R, Smith-Tone D (2016) Report on post-quantum cryptography. Report of National Institute of Standards and Technology, US Department of Commerce, NISTIR 8105. https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf

  305. EL-Latif A A A, Abd-El-Atty B, Hossain M S, Elmougy S, Ghoneim A (2018) Secure quantum steganography protocol for fog cloud internet of things. IEEE Access 6:10332–10340

    Article  Google Scholar 

  306. Amer O, Krawec WO (2019) Semiquantum key distribution with high quantum noise tolerance. Phys Rev A 100:022319-1–022319-16

    Article  MathSciNet  Google Scholar 

  307. Chun H, Choi I, Faulkner G, Clarke L, Barber B, George G, Capon C, Niskanen A, Wabnig J, O’Brien D, Bitauld D (2017) Handheld free space quantum key distribution with dynamic motion compensation. Opt Express 25(6):6784–6795

    Article  Google Scholar 

  308. Nordholt JE, Hughes RJ, Newell RT, Peterson CG, Rosenberg D, McCabe KP, Tyagi KT, Dallman N(2010) Quantum key distribution using card, base station and trusted authority, US Patent, Los Alamos National Security, LLC (Los Alamos, NM) DOE Contract Number AC52–06NA25396

  309. Hughes RJ, Nordholt JE, Peterson CG (2010) Secure multi-party communication with quantum key distribution managed by trusted authority, US Patent, Los Alamos National Security, LLC (Los Alamos, NM) DOE Contract Number AC52–06NA25396

  310. Battelle (2020) The future of security: zeroing in on un-hackable data with quantum key distribution https://www.wired.com/insights/2014/09/quantum-key-distribution/. Accessed 20 Feb 2020

  311. Xue P, Zhang X (2017) A simple quantum voting scheme with multi-qubit entanglement. Sci Rep 7:7586

    Article  Google Scholar 

  312. Yin J, Cao Y, Li YH, Liao SK, Zhang L, Ren JG, Cai WQ, Liu WY, Li B, Dai H, Li GB, Lu QM, Gong YH, Xu Y, Li SL, Li FZ, Yin YY, Jiang ZQ, Li M, Jia JJ, Ren G, He D, Zhou YL, Zhang XX, Wang N, Chang X, Zhu ZC, Liu NL, Chen YA, Lu CY, Shu R, Peng CZ, Wang JY, Pan JW (2017) Satellite-based entanglement distribution Over 1200 kilometers. Science 356:1140–1144

    Article  Google Scholar 

  313. Liao SK, Cai WQ, Liu WY, Zhang L, Li Y, Ren JG, Yin J, Shen Q, Cao Y, Li ZP, Li FZ, Chen XW, Sun LH, Jia JJ, Wu JC, Jiang XJ, Wang JF, Huang YM, Wang Q, Zhou YL, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen YA, Liu NL, Wang XB, Zhu ZC, Lu CY, Shu R, Peng CZ, Wang JY, Pan JW (2017) Satellite-to-ground quantum key distribution. Nature 549:43–60

    Article  Google Scholar 

  314. Liao SK, Cai WQ, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren JG, Liu WY, Li Y, Shen Q, Cao Y, Li FZ, Wang JF, Huang YM, Deng L, Xi T, Ma L, Hu T, Li L, Liu NL, Koidl F, Wang P, Chen YA, Wang XB, Steindorfer M, Kirchner G, Lu CY, Shu R, Ursin R, Scheidl T, Peng CZ, Wang JY, Zeilinger A, Pan JW (2018) Satellite-relayed intercontinental quantum network. Phys Rev Lett 120:030501-1–030501-4

    Article  Google Scholar 

  315. Sharma V, Banerjee S (2019) Analysis of atmospheric effects on satellite-based quantum communication: a comparative study. Quantum Inf Process 18:Article no 67

  316. Bedington R, Arrazola JM, Ling A (2017) Progress in satellite quantum key distribution. npj Quantum Inf 3:Article no 30

  317. First quantum video call. https://www.innovations-report.com/html/reports/information-technology/austrian-and-chinese-academies-of-sciences-successfully-conducted-first-inter-continental-quantum-video-call.html. Accessed 6 Feb 2020

  318. Arrighi P, Salvail L (2006) Blind quantum computation. Int J Quantum Inf 4(5):883–898

    Article  MATH  Google Scholar 

  319. Broadbent A, Fitzsimons J, Kashefi E (2009) Universal blind quantum computation. In: \(50^{th}\) annual IEEE symposium on foundations of computer science. Atlanta, CA, USA 25–27 Oct, pp 517–526

  320. Fitzsimons JF (2017) Private quantum computation: an introduction to blind quantum computing and related protocols. NPJ Quantum Inf 3:23

    Article  Google Scholar 

  321. Barz S, Kashefi E, Broadbent A, Fitzsimons JF, Zeilinger A, Walther P (2012) Demonstration of blind quantum computing. Science 335:303–308

    Article  MathSciNet  MATH  Google Scholar 

  322. Greganti C, Roehsner MC, Barz S, Morimae T, Walther P (2016) Demonstration of measurement-only blind quantum computing. New J Phys 18:013020

    Article  Google Scholar 

  323. Huang HL, Zhao Q, Ma X, Liu C, Su ZE, Wang XL, Li L, Liu NL, Sanders BC, Lu CY, Pan JW (2017) Experimental blind quantum computing for a classical client. Phys Rev Lett 119:050503

    Article  Google Scholar 

  324. Gottesman D, Chuang IL (2001) Quantum digital signatures, p 050503. arXiv.org/abs/quant-ph/0105032

  325. Andersson E, Curty M, Jex I (2006) Experimentally realizable quantum comparison of coherent states and its applications. Phys Rev A 74:022304

    Article  Google Scholar 

  326. Amiri R, Andersson E (2015) Unconditionally secure quantum signatures. Entropy 17(8):5635–5659

    Article  MathSciNet  MATH  Google Scholar 

  327. Cai XQ, Wang TY, Wei CY, Gao F (2019) Cryptanalysis of multiparty quantum digital signatures. Quantum Inf Process 18(8):252

    Article  MathSciNet  Google Scholar 

  328. Shi WM, Wang YM, Zhou YH, Yang YG (2018) Cryptanalysis on quantum digital signature based on asymmetric quantum cryptography. Optik 154:258–260

    Article  Google Scholar 

  329. Collins RJ, Donaldson RJ, Buller GS (2018) Progress in experimental quantum digital signatures. In: Proceedings of quantum communications and quantum imaging XVI, San Diego, California, United States, p 10771

  330. Collins RJ, Amiri R, Fujiwara M, Honjo T, Shimizu K, Tamaki K, Takeoka M, Sasaki M, Andersson E, Buller GS (2017) Experimental demonstration of quantum digital signatures over 43db channel loss using differential phase shift quantum key distribution. Sci Rep 7:3235

    Article  Google Scholar 

  331. Donaldson RJ, Collins RJ, Kleczkowska K, Amiri R, Wallden P, Dunjko V, Jeffers J, Andersson E, Buller GS (2016) Experimental demonstration of kilometer-range quantum digital signatures. Phys Rev A 93(1):012329

    Article  Google Scholar 

  332. Mirhosseini M, Magana-Loaiza OS, O’Sullivan MN, Rodenburg B, Malik M, Lavery MPJ, Padgett MJ, Gauthier DJ, Boyd RW (2015) High-dimensional quantum cryptography with twisted light. New J Phys 17:033033

    Article  MathSciNet  Google Scholar 

  333. Canas G, Vera N, Carine J, Gonzalez P, Cardenas J, Connolly PWR, Przysiezna A, Gomez ES, Figueroa M, Vallone G, Villoresi P, Silva TFD, Xavier GB, Lima G (2017) High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys Rev A 96:022317

    Article  Google Scholar 

  334. Ding Y, Bacco D, Dalgaard K, Cai X, Zhou X, Rottwitt K, Oxenlowe LK (2017) High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf 3:25

    Article  Google Scholar 

  335. Mower J, Zhang Z, Desjardins P, Lee C, Shapiro JH, Englund D (2013) High-dimensional quantum key distribution using dispersive optics. Phys Rev A 87:062322

    Article  Google Scholar 

  336. Brougham T, Barnett SM, McCusker KT, Kwiat PG, Gauthier DJ (2013) Security of high-dimensional quantum key distribution protocols using Franson interferometers. J Phys B At Mol Opt Phys 46(10):104010

    Article  Google Scholar 

  337. Brougham T, Wildfeuer CF, Barnett SM, Gauthier DJ (2016) The information of high-dimensional time-bin encoded photons. Eur Phys J D 70:214

    Article  Google Scholar 

  338. Islam NT (2018) High-rate, high-dimensional quantum key distribution systems, PhD Thesis, Duke University

  339. Islam NT, Lim CCW, Cahall C, Qi B, Kim J, Gauthier DJ (2019) Scalable high-rate, high-dimensional quantum key distribution, pp 1–10. arXiv:1902.00811

  340. Chandran N, Goyal V, Moriarty R, Ostrovsky R (2009) Position based cryptography. In: Proceedings of the \(29^{th}\) annual international cryptology conference on advances in cryptology, vol 29. Springer, pp 391–407

  341. Chandran N, Fehr S, Gelles R, Goyal V, Ostrovsky R (2010) Position-based quantum cryptography. https://arxiv.org/PS_cache/arxiv/pdf/1005/1005.1750v1.pdf

  342. Bilski P, Winiecki W (2013) Analysis of the position-based quantum cryptography usage in the distributed measurement system. Measurement 46(10):4353–4361

    Article  Google Scholar 

  343. Buhrman H, Chandran N, Fehr S, Gelles R, Goyal V, Ostrovsky R, Schaffner C (2014) Position-based quantum cryptography: impossibility and constructions. SIAM J Comput 43(1):150–178

    Article  MathSciNet  MATH  Google Scholar 

  344. Chakraborty K, Leverrier A (2015) Practical position-based quantum cryptography. Phys Rev A 92:052304

    Article  Google Scholar 

  345. Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner MG, Natarajan CM, Hadfield RH, O’Brien JL, Thompson MG (2017) Chip-based quantum key distribution. Nat Commun 8:13984

    Article  Google Scholar 

  346. Roger T, Paraiso T, Marco ID, Marangon DG, Yuan Z, Shields AJ (2019) Real-time interferometric quantum random number generation on chip. J Opt Soc Am B 36(3):B137–B142

    Article  Google Scholar 

  347. Zhang G, Haw JY, Cai H, Xu F, Assad SM, Fitzsimons JF, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek LC, Liu AQ (2019) An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat Photonics 13:839–842

    Article  Google Scholar 

  348. Blum M (1981) Coin flipping by telephone. CRYPTO, pp 11–15

  349. Molina-Terriza G, Vaziri A, Ursin R, Zeilinger A (2005) Experimental quantum coin tossing. Phys Rev Lett 94:040501

    Article  Google Scholar 

  350. Colbeck R (2007) An entanglement-based protocol for strong coin tossing with bias 1/4. Phys Lett A 362:390–392

    Article  MathSciNet  MATH  Google Scholar 

  351. Spekkens RW, Rudolph T (2001) Degrees of concealment and bindingness in quantum bit commitment protocols. Phys Rev A 65:012310

    Article  Google Scholar 

  352. Toshiba (2020) https://www.toshiba.eu/pages/eu/cambridge-research-laboratory/quantum-key-distribution/. Accessed 18 Feb 2020

  353. QuantumCTek (2020). http://www.quantum-info.com/english/. Accessed 18 Feb 2020

  354. ID Quantique SA, Switzerland (2020). www.idquantique.com. Accessed 18 Feb 2020

  355. Cerberis (2020). https://www.idquantique.com/quantum-safe-security/products/cerberis3-qkd-system/. Accessed 18 Feb 2020

  356. Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussieres F, Li MJ, Nolan D, Martin A, Zbinden H (2018) Secure quantum key distribution over 421 km of optical fiber. Phys Rev Lett 121:190502

    Article  Google Scholar 

  357. Travagnin M, Lewis A (2019) Quantum key distribution in-field implementations. JRC Technical Reports, pp 1–41

  358. Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe AW, Dixon AR, Lavelle E, Dynes JF, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields AJ (2018) 10-Mb/s quantum key distribution. J Lightwave Technol 36(16):3427–3433

    Article  Google Scholar 

  359. Broadbent A (2018) How to verify a quantum computation. Theory Comput 14(11):1–37

    Article  MathSciNet  MATH  Google Scholar 

  360. Gheorghiu A, Kashefi E, Wallden P (2015) Robustness and device independence of verifiable blind quantum computing. New J Phys 17(8):083040

    Article  MATH  Google Scholar 

  361. Klarreich E (2018) Graduate student solves quantum verification problem. QuantaMagazine

Download references

Acknowledgements

All figures in this manuscript has been drawn using Edraw Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Garhwal, S. State-of-the-Art Survey of Quantum Cryptography. Arch Computat Methods Eng 28, 3831–3868 (2021). https://doi.org/10.1007/s11831-021-09561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09561-2

Navigation