Skip to main content
Log in

Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh–DeWitt detector system

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We studied the quantum correlations of a three-body Unruh–DeWitt detector system using genuine tripartite entanglement (GTE) and geometric quantum discord (GQD). We considered two representative three-body initial entangled states, namely the GHZ state and the W state. We demonstrated that the quantum correlations of the tripartite system are completely destroyed at the limit of infinite acceleration. In particular, it is found that the GQD of the two initial states exhibits “sudden change” behavior with increasing acceleration. It is shown that the quantum correlations of the W state are more sensitive than those of the GHZ state under the effect of Unruh thermal noise. The GQD is a more robust quantum resource than the GTE, and we can achieve robustness in discord-type quantum correlations by selecting the smaller energy gap in the detector. These findings provide guidance for selecting appropriate quantum states and resources for quantum information processing tasks in a relativistic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14(4), 870 (1976)

    Article  ADS  Google Scholar 

  2. B. S. DeWitt, Quantum Gravity: The New Synthesis, Cambridge University Press, 1979

  3. N. Birrell and P. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1984

  4. B. S. DeWitt, in General Relativity: An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel, Cambridge University Press, Cambridge, England, 1980

    Google Scholar 

  5. B. Reznik, A. Retzker, and J. Silman, Violating Bell’s inequalities in vacuum, Phys. Rev. A 71(4), 042104 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. L. C. Céleri, A. G. S. Landulfo, R. M. Serra, and G. E. A. Matsas, Sudden change in quantum and classical correlations and the Unruh effect, Phys. Rev. A 81(6), 062130 (2010)

    Article  ADS  Google Scholar 

  7. J. Wang, Z. Tian, J. Jing, and H. Fan, Irreversible degradation of quantum coherence under relativistic motion, Phys. Rev. A 93(6), 062105 (2016)

    Article  ADS  Google Scholar 

  8. Z. Liu, J. Zhang, R. B. Mann, and H. Yu, Does acceleration assist entanglement harvesting? Phys. Rev. D 105(8), 085012 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Wang, L. Zhang, S. Chen, and J. Jing, Estimating the Unruh effect via entangled many-body probes, Phys. Lett. B 802, 135239 (2020)

    Article  MathSciNet  Google Scholar 

  10. J. Wang, Z. Tian, J. Jing, and H. Fan, Quantum metrology and estimation of Unruh effect, Sci. Rep. 4(1), 7195 (2014)

    Article  ADS  Google Scholar 

  11. A. G. S. Landulfo and G. E. A. Matsas, Sudden death of entanglement and teleportation fidelity loss via the Unruh effect, Phys. Rev. A 80(3), 032315 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. P. M. Alsing and G. J. Milburn, Teleportation with a uniformly accelerated partner, Phys. Rev. Lett. 91(18), 180404 (2003)

    Article  ADS  Google Scholar 

  14. M. Aspachs, G. Adesso, and I. Fuentes, Optimal quantum estimation of the Unruh–Hawking effect, Phys. Rev. Lett. 105(15), 151301 (2010)

    Article  ADS  Google Scholar 

  15. E. Martín-Martínez, D. Aasen, and A. Kempf, Processing quantum information with relativistic motion of atoms, Phys. Rev. Lett. 110(16), 160501 (2013)

    Article  ADS  Google Scholar 

  16. N. Friis, A. R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson, and I. Fuentes, Relativistic quantum teleportation with superconducting circuits, Phys. Rev. Lett. 110(11), 113602 (2013)

    Article  ADS  Google Scholar 

  17. J. Wang and J. Jing, Quantum decoherence in noninertial frames, Phys. Rev. A 82(3), 032324 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Q. Liu, S. M. Wu, C. Wen, and J. Wang, Quantum properties of fermionic fields in multi-event horizon space-time, Sci. China Phys. Mech. Astron. 66(22), 120413 (2023)

    Article  ADS  Google Scholar 

  19. D. C. M. Ostapchuk, S. Y. Lin, R. B. Mann, and B. L. Hu, Entanglement dynamics between inertial and non-uniformly accelerated detectors, J. High Energy Phys. 2012, 72 (2012)

    Article  Google Scholar 

  20. J. Doukas, S. Y. Lin, B. L. Hu, and R. B. Mann, Unruh effect under non-equilibrium conditions: Oscillatory motion of an Unruh–DeWitt detector, J. High Energy Phys. 2013(11), 119 (2013)

    Article  ADS  Google Scholar 

  21. B. Šoda, V. Sudhir, and A. Kempf, Acceleration-induced effects in stimulated light-matter interactions, Phys. Rev. Lett. 128(16), 163603 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Q. Quach, T. C. Ralph, and W. J. Munro, Berry phase from the entanglement of future and past light cones: Detecting the time-like Unruh effect, Phys. Rev. Lett. 129(16), 160401 (2022)

    Article  ADS  Google Scholar 

  23. K. Lorek, D. Pecak, E. G. Brown, and A. Dragan, Extraction of genuine tripartite entanglement from the vacuum, Phys. Rev. A 90(3), 032316 (2014)

    Article  ADS  Google Scholar 

  24. D. Mendez-Avalos, L. J. Henderson, K. Gallock-Yoshimura, and R. B. Mann, Entanglement harvesting of three Unruh–DeWitt detectors, Gen. Relativ. Gravit. 54(8), 87 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  25. D. M. Avalos, K. Gallock-Yoshimura, L. J. Henderson, and R. B. Mann, Instant extraction of non-perturbative tripartite entanglement, arXiv: 2204.02983 (2022)

  26. I. J. Membrere, K. Gallock-Yoshimura, L. J. Henderson, and R. B. Mann, Tripartite entanglement extraction from the black hole vacuum, Adv. Quantum Technol. 6(9), 2300125 (2023)

    Article  Google Scholar 

  27. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal, Exact and asymptotic measures of multipartite pure-state entanglement, Phys. Rev. A 63(1), 012307 (2000)

    Article  ADS  Google Scholar 

  29. V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  30. Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75(6), 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Perfect quantum error correcting code, Phys. Rev. Lett. 77(1), 198 (1996)

    Article  ADS  Google Scholar 

  32. A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum metrology in non-Markovian environments, Phys. Rev. Lett. 109(23), 233601 (2012)

    Article  ADS  Google Scholar 

  33. A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  34. L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Quantum source of entropy for black holes, Phys. Rev. D 34(2), 373 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  35. S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14(10), 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Terashima, Entanglement entropy of the black hole horizon, Phys. Rev. D 61(10), 104016 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Headrick, V. E. Hubeny, A. Lawrence, and M. Rangamani, Causality & holographic entanglement entropy, J. High Energy Phys. 2014(12), 162 (2014)

    Article  ADS  Google Scholar 

  38. M. R. Hwang, D. Park, and E. Jung, Tripartite entanglement in a noninertial frame, Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  39. Z. Tian, J. Wang, J. Jing, and A. Dragan, Entanglement enhanced thermometry in the detection of the Unruh effect, Ann. Phys. 377, 1 (2017)

    Article  ADS  Google Scholar 

  40. Y. Dai, Z. Shen, and Y. Shi, Quantum entanglement in three accelerating qubits coupled to scalar fields, Phys. Rev. D 94(2), 025012 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. M. Wu, H. S. Zeng, and T. H. Liu, Genuine multipartite entanglement subject to the Unruh and anti-Unruh effects, New J. Phys. 24(7), 073004 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  42. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, Experimental quantum computing without entanglement, Phys. Rev. Lett. 101(20), 200501 (2008)

    Article  ADS  Google Scholar 

  43. A. Datta, A. Shaji, and C. M. Caves, Quantum discord and the power of one qubit, Phys. Rev. Lett. 100(5), 050502 (2008)

    Article  ADS  Google Scholar 

  44. J. Niset and N. J. Cerf, Multipartite nonlocality without entanglement in many dimensions, Phys. Rev. A 74(5), 052103 (2006)

    Article  ADS  Google Scholar 

  45. H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  Google Scholar 

  46. L. Henderson and V. Vedral, Classical, quantum and total correlations, J. Phys. Math. Gen. 34(35), 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Ali, A. R. P. Rau, and G. Alber, Quantum discord for two-qubit X states, Phys. Rev. A 81(4), 042105 (2010)

    Article  ADS  Google Scholar 

  48. Y. H. Huang, Quantum discord for two-qubit X states: Analytical formula with very small worst-case error, Phys. Rev. A 88(1), 014302 (2013)

    Article  ADS  Google Scholar 

  49. Y. H. Huang, Computing quantum discord is NP-complete, New J. Phys. 16(3), 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  50. B. Dakić, V. Vedral, and C. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105(19), 190502 (2010)

    Article  ADS  Google Scholar 

  51. K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, Unified view of quantum and classical correlations, Phys. Rev. Lett. 104(8), 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  52. J. Zhou and H. Guo, Dynamics of tripartite geometric quantifiers of correlations in a quantum spin system, Phys. Rev. A 87(6), 062315 (2013)

    Article  ADS  Google Scholar 

  53. Č. Brukner, M. Żukowski, J. W. Pan, and A. Zeilinger, Bell’s inequalities and quantum communication complexity, Phys. Rev. Lett. 92(12), 127901 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  54. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985

    Book  Google Scholar 

  55. C. C. Rulli and M. S. Sarandy, Global quantum discord in multipartite systems, Phys. Rev. A 84(4), 042109 (2011)

    Article  ADS  Google Scholar 

  56. C. Radhakrishnan, M. Laurière, and T. Byrnes, Multipartite generalization of quantum discord, Phys. Rev. Lett. 124(11), 110401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  57. S. L. Luo and S. S. Fu, Geometric measure of quantum discord, Phys. Rev. A 82(3), 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  58. W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  59. J. He, Z. Y. Ding, J. D. Shi, and T. Wu, Multipartite quantum coherence and distribution under the Unruh effect, Ann. Phys. 530(9), 1800167 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12122504 and 12374408) and the Natural Science Foundation of Hunan Province (Grant No. 2023JJ30384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieci Wang.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, T., Wen, C., Jing, J. et al. Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh–DeWitt detector system. Front. Phys. 19, 54201 (2024). https://doi.org/10.1007/s11467-024-1398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-024-1398-3

Keywords

Navigation