Skip to main content
Log in

Quantum realization of the nearest neighbor value interpolation method for INEQR

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper presents the nearest neighbor value (NNV) interpolation algorithm for the improved novel enhanced quantum representation of digital images (INEQR). It is necessary to use interpolation in image scaling because there is an increase or a decrease in the number of pixels. The difference between the proposed scheme and nearest neighbor interpolation is that the concept applied, to estimate the missing pixel value, is guided by the nearest value rather than the distance. Firstly, a sequence of quantum operations is predefined, such as cyclic shift transformations and the basic arithmetic operations. Then, the feasibility of the nearest neighbor value interpolation method for quantum image of INEQR is proven using the previously designed quantum operations. Furthermore, quantum image scaling algorithm in the form of circuits of the NNV interpolation for INEQR is constructed for the first time. The merit of the proposed INEQR circuit lies in their low complexity, which is achieved by utilizing the unique properties of quantum superposition and entanglement. Finally, simulation-based experimental results involving different classical images and ratios (i.e., conventional or non-quantum) are simulated based on the classical computer’s MATLAB 2014b software, which demonstrates that the proposed interpolation method has higher performances in terms of high resolution compared to the nearest neighbor and bilinear interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D.: Quantum theory, the church–turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Shor P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  4. Grover L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  5. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Recent advances and new insights into quantum image processing, http://datamarket.atman360.com/111710. May 2017

  7. Yan, F., Iliyasu, A.M., Venegasandraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Vlasov, A.Y.: Quantum computations and images recognition. arXiv:quant-ph/9703010 (1997)

  9. Lugiato, L.A., Gatti, A., Brambilla, E.: Quantum Imaging J. Opt. B 4, 176–184 (2002)

    Article  Google Scholar 

  10. Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. IEEE Signal Process. Mag. 19, 12–32 (2001)

    Article  ADS  Google Scholar 

  11. Schützhold, R.: Pattern recognition on a quantum computer. Phys. Rev. A 67, 062311 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. Venegasandraca, S.E.: Storing, processing, and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105(8), 134–147 (2003)

    Google Scholar 

  13. Latorre J.: Image Compression and Entanglement. arXiv:quant-ph/0510031 (2005)

  14. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12, 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Li, H.S., Zhu, Q.X., Song, L., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12, 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Li, H.S., Zhu, Q.X., Zhou, R.G., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13, 991–1011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Yuan, S.Z., Mao, X., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13, 1353–1379 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16, 42 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fan, P., Zhou, R.G., Jing, N.H., Li, H.S.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340–341, 191–208 (2016)

    Article  Google Scholar 

  24. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhou, R.G., Tan, C.Y., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Sang, J.Z., Wang, S., Niu, X.M.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15(1), 37–64 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zhou, R.G., Hu, W.W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, 2511 (2017)

    Article  ADS  Google Scholar 

  29. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  31. Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sang, J.Z., Wang, S., Shi, X., Li, Q.: Quantum realization of Arnold scrambling for IFRQI. Int. J. Theor. Phys. 55(8), 3706–3721 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mogos, G.: Hiding data in a QImage file. Lect. Notes Eng. Comput Sci. 2174(1), 448–452 (2009)

    Google Scholar 

  34. Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12, 2765–2769 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Yang, Y.G., Wang, Y., Zhao, Q.Q.: Letter to the Editor regarding “Dynamic watermarking scheme for quantum images based on Hadamard transform” by Song et al. Multimed. Syst. 22, 271–272 (2016)

    Article  Google Scholar 

  37. Miyake, S., Nakama, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Zhou, R.G., Hu, W.W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16(9), 212 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  MATH  Google Scholar 

  40. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 1–14 (2016)

    Article  MATH  Google Scholar 

  41. Zhou, R.G., Yajuan Sun, Y.J.: Novel morphological operations for quantum image. J. Comput. Inf. Syst. 11(9), 3105–3112 (2015)

    Google Scholar 

  42. Zhou, R.G., Chang, X.B., Fan, P., et al.: Quantum image morphology processing based on quantum set operation. Int. J. Theor. Phys. 54(6), 1974–1986 (2015)

    Article  MATH  Google Scholar 

  43. Yuan, S.Z., Mao, X., et al.: Quantum morphology operations based on quantum representation model. Quantum Inf. Process. 14(5), 1625–1645 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Xiaowei F., Mingyue M., Yangguang Shaobin C.: A new quantum edge detection algorithm for medical images. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 7497, no. 9, pp. 749724-749724-7(2009)

  45. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf Sci. 58(1), 1–13 (2015)

    MATH  Google Scholar 

  46. Yi, Z., Kai, L., et al.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Jiang, N., Dang, Y.J., Wang, J.: Quantum image matching. Quantum Inf. Process. 15(9), 3543–3572 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Pang, C.Y., Zhou, Z.W., Guo, G.C.: Quantum discrete cosine transform for image compression. arXiv:quant-ph/0601043 (2006)

  49. Jiang, N., Lu, X., Hu, H., Cai, Y.: A novel quantum image compression method based on JPEG. Int. J. Theor. Phys. 1, 1–26 (2017)

    MATH  Google Scholar 

  50. Jiang, N., Hu, H., Dang, Y., Wang, Z.: Quantum point cloud and its compression. Int. J. Theor. Phys. 56(10), 3147–3163 (2017)

    Article  MATH  Google Scholar 

  51. Olivier, R., Cao, H.: Nearest neighbor value interpolation. Int. J. Adv. Comput. Sci. Appl. 3(4), 25–30 (2012)

    Google Scholar 

  52. Sutton S.: Encyclopedia of Research Design, vol. 135, no. 15, pp. 105–106. Sage (2010)

  53. Wang, D., Liu, Z.H., Zhu, W.N., Li, S.Z.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

  54. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  55. Kotiyal S., Thapliyal H., Ranganathan N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: International Conference on VLSI Design and 2014, International Conference on Embedded Systems. IEEE, pp. 545–550 (2014)

  56. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184 (2004)

  57. Khosropour, A., Aghababa, H., Forouzandeh, B.: Quantum division circuit based on restoring division algorithm. In: Eighth International Conference on Information Technology: New Generations. IEEE, pp. 1037–1040 (2011)

  58. Barenco, A., Bennett, C.H., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  Google Scholar 

  59. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambrige (2000)

    MATH  Google Scholar 

  60. Maslov, D., Dueck, G.W.: Level compaction in quantum circuits. In: IEEE International Conference on Evolutionary Computation. IEEE, pp. 2405–2409 (2006)

  61. Maslov, D., Duek, G.W., Miller, D.M., et al.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 27(3), 436–444 (2008)

    Article  Google Scholar 

  62. Xu, X., Xiao, F.: Application of dichotomy in decomposition of multi-line quantum logic gate. J. Southeast Univ. 40(5), 928–931 (2010). (in Chinese)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61463016 and 61763014, Science and technology innovation action plan of Shanghai in 2017 under Grant No.17510740300, Science and technology research project of Jiangxi Provincial Education Department under Grant No. GJJ170382, Project of International Cooperation and Exchanges of Jiangxi Province under Grant No. 20161BBH80034, Project of Humanities and Social Sciences in colleges and universities of Jiangxi Province under Grant No. JC161023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenWen Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Hu, W., Luo, G. et al. Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf Process 17, 166 (2018). https://doi.org/10.1007/s11128-018-1921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1921-y

Keywords

Navigation